• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2016 Fiscal Year Final Research Report

Development and Application of Statistical Estimation and Simulation for Super High Dimensional Data Space

Research Project

  • PDF
Project/Area Number 25240036
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Intelligent informatics
Research InstitutionOsaka University

Principal Investigator

Washio Takashi  大阪大学, 産業科学研究所, 教授 (00192815)

Co-Investigator(Kenkyū-buntansha) 伊庭 幸人  統計数理研究所, 大学共同利用機関等の部局等, 教授 (30213200)
Michael E.Houle  国立情報学研究所, 大学共同利用機関等の部局等, 教授 (90399270)
Co-Investigator(Renkei-kenkyūsha) SHIMIZU Shohei  滋賀大学, データサイエンス学部, 准教授 (10509871)
KAWAHARA Yoshinobu  大阪大学, 産業科学研究所, 准教授 (00514796)
INOGUCHI Akihiro  関西学院大学, 理工学部, 准教授 (70452456)
Research Collaborator Ting Kai Ming  Federation University Australia, Faculty of Science and Technology, Professor
Project Period (FY) 2013-04-01 – 2017-03-31
Keywords超高次元データ / 機械学習 / データマイニング / 人工知能 / 次元の呪い / シミュレーション / 希少事象
Outline of Final Research Achievements

In this study, we aimed to develop (1) generic and robust principles of statistical estimation and scenario generation against super high dimensionality, (2) statistical estimation methods using super high dimensional data, (3) probabilistic scenario generation methods for super high dimensional space, (4) an application of these developed methods and simulation techniques, and (5) an international research community.
Throughout this project, we developed techniques of similarity measure, density evaluation, robust estimation, scenario search, retrieval and clustering, classification, anomaly detection, rare scenario generation, and frequent pattern derivation. We also organized two international conferences and seven international workshops/seminars.

Free Research Field

機械学習

URL: 

Published: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi