• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Infinite dimensional representations and global analysis

Research Project

  • PDF
Project/Area Number 25247006
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionThe University of Tokyo

Principal Investigator

Kobayashi Toshiyuki  東京大学, 大学院数理科学研究科, 教授 (80201490)

Co-Investigator(Renkei-kenkyūsha) OSHIMA TOSHIO  城西大学, 理学部数学科, 教授 (50011721)
MATSUKI TOSHIHIKO  龍谷大学, 文学部, 教授 (20157283)
KOHNO TOSHITAKE  東京大学, 大学院数理科学研究科, 教授 (80144111)
OCHIAI HIROYUKI  九州大学, マス・フォア・インダストリ研究所, 教授 (90214163)
HIRACHI KENGO  東京大学, 大学院数理科学研究科, 教授 (60218790)
SEKIGUCHI HIDEKO  東京大学, 大学院数理科学研究科, 准教授 (50281134)
SASAKI ATSUMU  東海大学, 理学部数学科, 准教授 (60514453)
Project Period (FY) 2013-04-01 – 2018-03-31
Keywords解析学 / 幾何学 / 表現論 / リー群 / 分岐則 / 不連続群
Outline of Final Research Achievements

For manifolds with action of reductive group G, we proved a geometric criterion for the multiplicity of irreducible representations to be finite (also to be bounded) in the regular representation of X. In turn, we gave a criterion for reductive symmetric pair (G,H) such that branching laws of irreducible decomposition of G to H have finite multiplicities, and accomplished the classification theory. In this framework, we initiated a systematic study of symmetry breaking operators, and gave the first complete classification results in the setting motivated from conformal geometry.
We also constructed eigenfunctions on locally non-Riemannian symmetric spaces whoes eigenvalues are stable under local deformation of discontinuous groups.

Free Research Field

解析学

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi