• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Stochastic processes on disordered media -- discrete models and their scaling limits

Research Project

  • PDF
Project/Area Number 25247007
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionKyoto University

Principal Investigator

Kumagai Takashi  京都大学, 数理解析研究所, 教授 (90234509)

Co-Investigator(Kenkyū-buntansha) 相川 弘明  北海道大学, 理学研究院, 教授 (20137889)
竹田 雅好  東北大学, 理学研究科, 教授 (30179650)
日野 正訓  京都大学, 情報学研究科, 准教授 (40303888)
舟木 直久  東京大学, 大学院数理科学研究科, 教授 (60112174)
木上 淳  京都大学, 情報学研究科, 教授 (90202035)
Co-Investigator(Renkei-kenkyūsha) SHIGEKAWA Ichiro  京都大学, 大学院理学研究科, 教授 (00127234)
KOTANI Motoko  東北大学, 大学院理学研究科, 教授 (50230024)
SHIRAI Tomoyuki  九州大学, 大学院マス・フォア・インダストリ研究所, 教授 (70302932)
FUKUSHIMA Ryoki  京都大学, 数理解析研究所, 准教授 (60527886)
Project Period (FY) 2013-04-01 – 2017-03-31
Keywords確率論 / 数理物理 / 解析学 / 複雑系 / 統計力学 / 熱方程式
Outline of Final Research Achievements

We studied dynamics on random media and their scaling limits in a systematical way. Our major achievements are as follows: i) We proved convergence of Markov chains on random conductances with boundaries under a wide framework. The convergence is with probability one with respect to the randomness of the media. ii) We proved sub-sequential convergence of the random walk on 2-dimensional uniform spanning tree, which is a random media whose scaling limit is conformal invariant, and gave detailed estimates of the heat kernel for the limiting process. iii) We proved stability of heat kernel estimates for symmetric jump processes on metric measure spaces. This was one of the major open problems in the area for more than 10 years.

Free Research Field

確率論

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi