• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2016 Fiscal Year Final Research Report

Modelling of non-stationary spatio-temporal data with estimation, testing and forecasting

Research Project

  • PDF
Project/Area Number 25280005
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypePartial Multi-year Fund
Section一般
Research Field Statistical science
Research InstitutionTohoku University

Principal Investigator

Matsuda Yasumasa  東北大学, 経済学研究科(研究院), 教授 (10301590)

Co-Investigator(Kenkyū-buntansha) 陳 春航  琉球大学, 理学部, 准教授 (00264466)
栗原 考次  岡山大学, その他の研究科, 教授 (20170087)
柿沢 佳秀  北海道大学, 経済学研究科(研究院), 教授 (30281778)
西山 慶彦  京都大学, 経済研究所, 教授 (30283378)
丸山 祐造  東京大学, 学内共同利用施設等, 准教授 (30304728)
生川 雅紀  岡山大学, 社会文化科学研究科, 准教授 (30588489)
西井 龍映  九州大学, 学内共同利用施設等, 教授 (40127684)
高橋 邦彦  名古屋大学, 医学(系)研究科(研究院), 准教授 (50323259)
矢島 美寛  東京大学, 経済学研究科(研究院), 教授 (70134814)
Project Period (FY) 2013-04-01 – 2017-03-31
Keywordsspatio-temporal data / Whittle estimate / spectral density / kriging / forecasting / separable correlations / irregularly spaced data
Outline of Final Research Achievements

We have developed a model to analyze huge spatio-temporal data set with non-stationary structures and proposed a method of parameter estimation, testing of correlation structures and forecasting with applications to empirical data mainly from environmental studies. Specifically, We have considered a separable model whose spatio-temporal correlations are given by product of spatial and temporal correlations. In the empirical studies in this research, we employed continuous autoregressive moving average (CARMA) models for spatial behaviors and traditional ARMA models for temporal ones. We applied the separable models to the US rain fall data recorded monthly at 6000 points irregularly spaced inside US continent and found proposed an efficient estimation, testing and forecasting methods that can cope with huge data set composed of several million data points.

Free Research Field

時系列解析、時空間統計学

URL: 

Published: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi