• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2016 Fiscal Year Final Research Report

Epileptic seizure prediction system using wearable HRV sensor

Research Project

  • PDF
Project/Area Number 25282175
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypePartial Multi-year Fund
Section一般
Research Field Rehabilitation science/Welfare engineering
Research InstitutionTokyo Medical and Dental University

Principal Investigator

Miho Miyajima  東京医科歯科大学, 医歯(薬)学総合研究科, 助教 (70616177)

Co-Investigator(Kenkyū-buntansha) 藤原 幸一  京都大学, 情報学研究科, 助教 (10642514)
山川 俊貴  熊本大学, 学内共同利用施設等, 助教 (60510419)
Co-Investigator(Renkei-kenkyūsha) KANO Manabu  京都大学, 情報学研究科, 教授 (60510419)
MATSUURA Masato  東京医科歯科大学, 名誉教授 (60134673)
MAEHARA Taketoshi  東京医科歯科大学, 医歯学総合研究科, 教授 (40211560)
Research Collaborator INAJI Motoki  東京医科歯科大学, 医学部附属病院, 講師 (00422486)
SASANO Tetsuo  東京医科歯科大学, 大学院保健衛生学研究科, 准教授 (00466898)
WATANABE Satsuki  国立精神・神経医療研究センター病院, 精神科, 医師 (30796016)
SAKUMA Taeko  東京医科大学, 医学部, 助教 (70419026)
JIN Kazutaka  東北大学, 医学系研究科, 教授 (20436091)
NAKAZATO Nobukazu  東北大学, 医学系研究科, 教授 (80207753)
Project Period (FY) 2013-04-01 – 2017-03-31
Keywordsてんかん発作兆候検知 / 心拍変動解析(HRV) / ウェアラブルセンサ / 多変量統計的プロセス管理(MSPC) / 生活の質(QOL)
Outline of Final Research Achievements

Patients with intractable epilepsy suffer from accidents and injuries associated with epileptic seizures. To prevent the seizure-associated accidents and improve quality of life (QOL) of epileptic patients, the present work proposes a new real-time epileptic seizure prediction and alert system employing a wearable heart rate variability (HRV) telemeter and a smartphone. The R-R interval (RRI) data is stored into a smartphone via a Bluetooth wireless transmission. The smartphone application for epileptic seizure prediction detect peri-ictal status based on multivariate statistical process control (MSPC) for the HRV data and alert the patients and the caregivers to the seizure. The HRV-based seizure prediction algorithm demonstrated sensitivity of 91% for partial seizures, that is, competitive performance with electroencephalography (EEG)-based methods. The possibility of realizing a HRV-based epileptic seizure prediction system with high wearability was shown.

Free Research Field

臨床てんかん学

URL: 

Published: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi