• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Integrated research of Calabi-Yau structures and generalized complex structures

Research Project

  • PDF
Project/Area Number 25287011
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypePartial Multi-year Fund
Section一般
Research Field Geometry
Research InstitutionOsaka University

Principal Investigator

Goto Ryushi  大阪大学, 理学研究科, 教授 (30252571)

Co-Investigator(Kenkyū-buntansha) 小木曽 啓示  東京大学, 数理(科)学研究科(研究院), 教授 (40224133)
満渕 俊樹  大阪大学, その他部局等, 名誉教授 (80116102)
松本 佳彦  大阪大学, 理学(系)研究科(研究院), 助教 (00710625)
Project Period (FY) 2013-04-01 – 2018-03-31
Keywords一般化された複素構造 / カラビーヤオ構造 / 一般化されたケーラー構造 / ポアソン構造 / 変形理論 / ケーラーアインシュタイン計量 / エルミートアインシュタイン計量 / モーメント写像
Outline of Final Research Achievements

From a view point of the moment map, we introduce the notion of Einstein-Hermitian generalized connections over a generalized Kahler manifold of symplectic type. We show that moduli spaces of Einstein- Hermitian generalized connections arise as the Kahler quotients. The deformation complex of Einstein-Hermitian generalized connections is an elliptic complex and it turns out that the smooth part of the moduli space is a finite dimensional Kahler manifold. The canonical line bundle over a generalized Kahler manifold of symplectic type has the canonical generalized connection and its curvature coincides with ”the scalar curvature as the moment map”. Kahler-Ricci solitons provide examples of Einstein-Hermitian generalized connections and Einstein Hermitian co-Higgs bundles are also discussed.

Free Research Field

微分幾何、複素幾何

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi