2017 Fiscal Year Final Research Report
Integrated research of Calabi-Yau structures and generalized complex structures
Project/Area Number |
25287011
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Partial Multi-year Fund |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Osaka University |
Principal Investigator |
Goto Ryushi 大阪大学, 理学研究科, 教授 (30252571)
|
Co-Investigator(Kenkyū-buntansha) |
小木曽 啓示 東京大学, 数理(科)学研究科(研究院), 教授 (40224133)
満渕 俊樹 大阪大学, その他部局等, 名誉教授 (80116102)
松本 佳彦 大阪大学, 理学(系)研究科(研究院), 助教 (00710625)
|
Project Period (FY) |
2013-04-01 – 2018-03-31
|
Keywords | 一般化された複素構造 / カラビーヤオ構造 / 一般化されたケーラー構造 / ポアソン構造 / 変形理論 / ケーラーアインシュタイン計量 / エルミートアインシュタイン計量 / モーメント写像 |
Outline of Final Research Achievements |
From a view point of the moment map, we introduce the notion of Einstein-Hermitian generalized connections over a generalized Kahler manifold of symplectic type. We show that moduli spaces of Einstein- Hermitian generalized connections arise as the Kahler quotients. The deformation complex of Einstein-Hermitian generalized connections is an elliptic complex and it turns out that the smooth part of the moduli space is a finite dimensional Kahler manifold. The canonical line bundle over a generalized Kahler manifold of symplectic type has the canonical generalized connection and its curvature coincides with ”the scalar curvature as the moment map”. Kahler-Ricci solitons provide examples of Einstein-Hermitian generalized connections and Einstein Hermitian co-Higgs bundles are also discussed.
|
Free Research Field |
微分幾何、複素幾何
|