• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Variational study of nonlinear elliptic problems

Research Project

  • PDF
Project/Area Number 25287025
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypePartial Multi-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionWaseda University

Principal Investigator

Tanaka Kazunaga  早稲田大学, 理工学術院, 教授 (20188288)

Co-Investigator(Kenkyū-buntansha) 小薗 英雄  早稲田大学, 理工学術院, 教授 (00195728)
山田 義雄  早稲田大学, 理工学術院, 教授 (20111825)
大谷 光春  早稲田大学, 理工学術院, 教授 (30119656)
小澤 徹  早稲田大学, 理工学術院, 教授 (70204196)
Co-Investigator(Renkei-kenkyūsha) ADACHI Shinji  静岡大学, 工学部, 教授 (40339685)
IKOMA Norihisa  金沢大学, 理学部, 准教授 (50728342)
SATO Yohei  埼玉大学, 理工学研究科, 准教授 (00465387)
KURATA Kazuhiro  首都大学東京, 理工学研究科, 教授 (10186489)
Shioji Naoki  横浜国立大学, 工学研究院, 教授 (50215943)
KANEKO Yuki  早稲田大学, 理工学術院, 助教 (40773916)
Research Collaborator Hirata Jun  
Project Period (FY) 2013-04-01 – 2018-03-31
Keywords変分問題 / 非線形楕円型方程式 / 特異摂動問題 / ミニマックス法
Outline of Final Research Achievements

Via variational approached, we study nonlinear elliptic problems. In particular, we develop a new variational approach and we construct concentrating solutions for several singular perturbation problems, where uniqueness and non-degenerary of solutions of limit problems are not known and the Lyapunov-Schmidt reduction method is not applicable.
We also introduce new variational approaches based on the scaling properties the problems, which enable us to study ground states and other solutions for several nonlinear elliptic equations and systmes.

Free Research Field

解析学

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi