2016 Fiscal Year Final Research Report
Reseach on representations of association schemes
Project/Area Number |
25400011
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Shinshu University |
Principal Investigator |
HANAKI Akihide 信州大学, 学術研究院理学系, 教授 (50262647)
|
Research Collaborator |
YOSHIKAWA Masayoshi 兵庫教育大学, 学校教育研究科, 准教授 (10757743)
SHIMABUKURO Osamu 長崎大学, 教育学部, 准教授 (40413736)
|
Project Period (FY) |
2013-04-01 – 2017-03-31
|
Keywords | 代数学 / 組合せ論 / アソシエーション・スキーム / 表現 / 加群 |
Outline of Final Research Achievements |
We studied on representations of association schemes and coherent configurations, especially modular representations. Their adjacency algebras are non semisimple, in general, and not studied so well. We computed some examples: half-cases, cyclotomic association schemes, and coherent configurations which correspond to symmetric designs. Also we studied [1] possibility of 6 dimensional non-commutative association schemes (with P.-H. Zieschang) [2] precise version of Clifford theorem for association schemes (with Y. Miyazaki) [3] block version of Maschke's theorem for association schemes.
|
Free Research Field |
代数学
|