• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Final Research Report

Development of the index theorem on foliated manifolds

Research Project

  • PDF
Project/Area Number 25400085
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionNagoya University

Principal Investigator

Moriyoshi Hitoshi  名古屋大学, 多元数理科学研究科, 教授 (00239708)

Co-Investigator(Renkei-kenkyūsha) NATSUME TOSHIKAZU  名古屋工業大学, 工学系研究科, 教授 (00125890)
MAEDA YOSHIAKI  慶應義塾大学, 理工学部, 教授 (40101076)
MITSUMATSU YOSHIHIKO  中央大学, 理工学部, 教授 (70190725)
ONO KAORU  京都大学, 数理解析研究所, 教授 (20204232)
MIYAZAKI NAOYA  慶應義塾大学, 経済学部, 教授 (50315826)
TAKAKURA TATSURU  中央大学, 理工学部, 教授 (30268974)
TATE TETSUYA  名古屋大学, 大学院多元数理科学研究科, 准教授 (00317299)
Project Period (FY) 2013-04-01 – 2016-03-31
Keywords指数定理 / 非可換幾何 / 葉層多様体 / Godbillon-Vey 不変量 / K理論 / 巡回コホモロジー
Outline of Final Research Achievements

First, we extended the index theorem to fractal sets such as the Cantor set and the Sierpinski gasket. Second, by exploiting the framework of Noncommutative Geometry we generalized the Atiyah-Patodi-Singer index theorem to a Galois covering of compact manifold with boundary, which gives a formula for the pairing between K-group and cyclic cohomology. Third, we clarified the relation of the Dixmier-Douady class and the Godbillon-Vey class, which respectively appears as a characteristic class for Gerbe and foliated circle bundles. It turned out that they are connected via the Cheeger-Chern-Simons invariant. As a byproduct we succeeded to describe the universal central extension of circle diffeomorphism group in terms of the Calabi invariant.

Free Research Field

位相幾何,非可換幾何

URL: 

Published: 2017-05-10  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi