• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2014 Fiscal Year Research-status Report

バナッハ空間におけるリプシッツ発展作用素の生成・収束・近似

Research Project

Project/Area Number 25400145
Research InstitutionChuo University

Principal Investigator

小林 良和  中央大学, 理工学部, 教授 (80092691)

Co-Investigator(Kenkyū-buntansha) 松本 敏隆  広島大学, 理学(系)研究科(研究院), 助教 (20229561)
小林 和夫  早稲田大学, 教育・総合科学学術院, 教授 (80103612)
應和 宏樹  新潟大学, 自然科学系, 助教 (10549158)
Project Period (FY) 2013-04-01 – 2016-03-31
Keywords保存則方程式系 / 弱連続作用素 / 抽象的Cauchy問題 / 非線形保存型方程式 / リプシッツ作用素半群 / リプシッツ発展作用素
Outline of Annual Research Achievements

昨年度に引き続き,バナッハ空間におけるリプシッツ作用素半群の研究成果を時間に依存する発展方程式に応ずるリプシッツ発展作用素の理論として,発展展開させることを目的に研究した.すでに得た非柱状領域での生成素が連続なときの生成についての結果は学術論文にまとめて投稿し,査読者の改善意見に従い再投稿した.
また,生成素が連続な場合の拡張として,弱連続な場合に対する抽象コーシー問題の解の一意存在について結果を得た.
さらに,ある区分的に線形な不連続関数の性質について考察し,その不連続のクラスの分類を試みることで,その関数の周期的な性質に関する結果を得た.保存則方程式系の初期値問題の解の一意性を示す足掛かりとなることを期待している.
加えて,乗法的確率項を持つ非線形保存型方程式についての初期値ー境界値問題にたいして
"Renomalized kinetic solution" を導入し,その一意性を調べた.

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

リプシッツ発展作用素の生成理論として,生成素が連続なときの生成を論じて結果を得たが,さらに,弱連続な場合にまで考察の範囲を広げた.
従来の研究成果に比して一般的であるが,生成素が連続でないときの研究は不十分であり,この方面についてさらに考察する必要がある.
また,生成素が連続の場合についても,もともとの目標である収束・近似に関する研究を進める必要がある.

Strategy for Future Research Activity

リプシッツ発展作用素の理論をさらに発展展開させることを目的に,かならずしも強連続とは限らない生成素の場合についての基礎的な考察をおこなう.
関連して,双曲型保存則方程式系に対するリーマン問題や確率保存型方程式に対する非斉次ディリクレ問題などについて考察する.

Causes of Carryover

謝金や消耗費などの必要が予定より少なかったため。

Expenditure Plan for Carryover Budget

謝金や消耗費などとして使用する。

  • Research Products

    (3 results)

All 2014

All Journal Article (1 results) Presentation (2 results)

  • [Journal Article] Renomalized solutions to stochastic conservation laws2014

    • Author(s)
      Kazuo Kobayasi and Dai Noboriguchi
    • Journal Title

      早稲田大学教育・総合科学学術院 学術研究(自然科学編)

      Volume: 63 Pages: 31-45

  • [Presentation] 弱連続作用素に対する抽象的 Cauchy問題について2014

    • Author(s)
      松本敏隆、田中直樹
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      広島大学
    • Year and Date
      2014-09-25 – 2014-09-28
  • [Presentation] 確率保存型方程式に対する非斉次Dirichlet 問題の解の存在定理2014

    • Author(s)
      登口大,小林和夫
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      広島大学
    • Year and Date
      2014-09-25 – 2014-09-28

URL: 

Published: 2016-05-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi