• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Final Research Report

Studies on proper holomorphic mappings, univalent holomorphic mappings and harmonic mappings on the unit balls

Research Project

  • PDF
Project/Area Number 25400151
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionKyushu Sangyo University

Principal Investigator

HAMADA Hidetaka  九州産業大学, 工学部, 教授 (30198808)

Co-Investigator(Renkei-kenkyūsha) HONDA Tatsuhiro  広島工業大学, 工学部, 教授 (20241226)
Project Period (FY) 2013-04-01 – 2016-03-31
Keywordsレブナー鎖 / 螺旋型写像 / ルンゲ領域 / シュワルツの補題 / シュワルツ・ピックの補題 / 多重調和写像 / 単葉正則写像
Outline of Final Research Achievements

We introduce normalized Loewner chains in the unit ball, which we call ``spacious". We apply our construction to the study of support points, extreme points in the class S0 of univalent holomorphic mappings.
We generalize the harmonic Schwarz lemma to pluriharmonic mappings of the unit ball of a complex Banach space. We obtain a generalization of the harmonic Schwarz-Pick lemma to the case of pluriharmonic mappings of the bounded symmetric domain in a complex Banach space. We obtain the Landau and the Bloch theorems on bounded symmetric domains.
We showed that any spirallike domain is Runge. We also showed the local uniform approximation of biholomorphic mappings on a spirallike domain, by automorphisms of Cn. As an application of the above result, we showed that any Loewner PDE in a complete hyperbolic spirallike domain admits an essentially unique univalent solution.

Free Research Field

多変数函数論

URL: 

Published: 2017-05-10  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi