• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Final Research Report

Theoretical considerations of model selection method based on a minimization of an information criterion

Research Project

  • PDF
Project/Area Number 25540012
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field Statistical science
Research InstitutionHiroshima University

Principal Investigator

Yanagihara Hirokazu  広島大学, 理学(系)研究科(研究院), 准教授 (70342615)

Co-Investigator(Renkei-kenkyūsha) FUJISAWA HIRONORI  統計数理研究所, 数理・推論研究系, 教授 (00301177)
NINOMIYA YOSHIYUKI  九州大学, マス フォア インダストリ研究所, 准教授 (50343330)
Project Period (FY) 2013-04-01 – 2016-03-31
Keywordsモデル選択 / 情報量規準 / 多変量線形回帰モデル / 高次元データ
Outline of Final Research Achievements

In this research, we study model selection method based on a minimization of an information criterion. There are many information criteria. We evaluate theoretical properties of an information criterion used for model selection by a large sample asymptotic theory such that the sample size goes to infinity and a high-dimensional and large sample asymptotic theory such that the sample size and the dimension of a vector of response variables go to infinity simultaneously. From obtained results, we provide standards of judgment with regard to deciding an information criterion.

Free Research Field

統計科学

URL: 

Published: 2017-05-10  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi