• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Final Research Report

Study on mechanism of hydrogen embrittlement through a use of characteristic strength properties of submicron materials

Research Project

  • PDF
Project/Area Number 25709003
Research Category

Grant-in-Aid for Young Scientists (A)

Allocation TypePartial Multi-year Fund
Research Field Materials/Mechanics of materials
Research InstitutionKansai University

Principal Investigator

TAKAHASHI Yoshimasa  関西大学, システム理工学部, 准教授 (20611122)

Research Collaborator TANAKA Nobuo  名古屋大学, 未来材料システム研究所, 教授 (40126876)
MUTO Shunsuke  名古屋大学, 未来材料システム研究所, 教授 (20209985)
KONDO Hikaru  関西大学, 大学院理工学研究科, 博士前期課程学生
AIHARA Kazuya  関西大学, 大学院理工学研究科, 博士前期課程学生
ASANO Ryo  関西大学, 大学院理工学研究科, 博士前期課程学生
ASHIDA Itaru  関西大学, 大学院理工学研究科, 博士前期課程学生
Project Period (FY) 2013-04-01 – 2016-03-31
Keywords水素脆性 / 格子脆化説 / サブミクロン材料 / 電子顕微鏡 / 強度評価
Outline of Final Research Achievements

The hydrogen-enhanced decohesion (HEDE) theory, which is claimed to be one of the fundamental mechanisms of the so-called hydrogen embrittlement (HE), is experimentally investigated by utilizing the characteristic mechanical properties of submicron-scale materials (e.g. high yield strength, low dislocation density). Submicron specimens are fabricated from (i) a grain boundary (GB) in a polycrystal and (ii) a thin-film layered material. They are fractured either along the GB or interface in a transmission electron microscope (TEM) equipped with an environmental cell. Brittle GB fracture, which is also accompanied by plasticity, is observed only in a hydrogen environment. The strength against interfacial fracture is eminently reduced in a hydrogen environment. These results strongly suggest that the HEDE and its influence on fracture are present regardless of the material scale.

Free Research Field

材料力学

URL: 

Published: 2017-05-10  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi