• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Final Research Report

Hierarchical statistical modeling for multivariate signal processing and its applications

Research Project

  • PDF
Project/Area Number 25730155
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Soft computing
Research InstitutionAdvanced Telecommunications Research Institute International

Principal Investigator

Hirayama Jun-ichiro  株式会社国際電気通信基礎技術研究所, 脳情報通信総合研究所, 専任研究員 (80512269)

Research Collaborator Hyvärinen Aapo  ヘルシンキ大学
Kiviniemi Vesa  オウル大学病院
OGAWA Takeshi  株式会社国際電気通信基礎技術研究所(ATR)
KAWANABE Motoaki  株式会社国際電気通信基礎技術研究所(ATR)
YAMASHITA Okito  株式会社国際電気通信基礎技術研究所(ATR)
ISHII Shin  京都大学
Project Period (FY) 2013-04-01 – 2016-03-31
Keywords機械学習 / 生体信号処理 / 脳機能イメージング / ブレイン・マシンインターフェイス
Outline of Final Research Achievements

We developed novel multivariate data analysis and signal processing methods to find and extract characteristic patterns from data, focusing on applications to the analysis of functional brain activity measurements. Our methods seek to find basis patterns (coactivation patterns, modules) of brain activity, thereby characterizing the global variability of functional brain connectivity, in a unified manner by explicitly modeling hierarchical structures underlying data. We evaluated each method with simulations, electro/magnetoencephalography and functional MRI data, which demonstrated the advantages over existing methods as well as applicability to functional brain imaging data analysis. Future applications to cognitive neuroscience or neural engineering can be expected.

Free Research Field

機械学習

URL: 

Published: 2017-05-10  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi