• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2014 Fiscal Year Final Research Report

Sparse support vector machine for big problem which sequentially-add categories

Research Project

  • PDF
Project/Area Number 25871033
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Intelligent informatics
Perceptual information processing
Research InstitutionNational Institute of Technology, Toyama College

Principal Investigator

KITAMURA Takuya  富山高等専門学校, 電気制御システム工学科, 助教 (40611918)

Project Period (FY) 2013-04-01 – 2015-03-31
Keywordsパターン認識 / 機械学習 / サポートベクトルマシン / スパース / オンライン学習
Outline of Final Research Achievements

In this research, I have developed sparse support vector machine for big problem which sequentially-add categories. For example, I apply this system to face identification which sequentially-add the categories (registrants). Then, this problem may be too big. However, this system uses only a new added category in training when this category is added. Using face identification problem and multi-category benchmark datasets, I evaluate the effectiveness of this system.

Free Research Field

機械学習

URL: 

Published: 2016-06-03  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi