2013 Fiscal Year Annual Research Report
Project/Area Number |
25885020
|
Research Institution | The University of Tokyo |
Principal Investigator |
藤嶋 翔太 東京大学, 空間情報科学研究センター, 講師 (50706835)
|
Project Period (FY) |
2013-08-30 – 2015-03-31
|
Keywords | 理論経済学 / 都市・地域経済学 / 進化ゲーム理論 / 人口集積 / 経済成長 / 地域間所得格差 / スピルオーバー / ネットワーク |
Outline of Annual Research Achievements |
多地域経済成長モデルを定式化し,複数均衡が存在するときにそれらの大域的な性質を見る上で有用なポテンシャル・ゲームの枠組みを用いて,定常均衡の特徴付けを行った.
経済成長のエンジンに関しては,標準的なAKモデルに類似したものを考えた.各地域の生産活動は集計された生産関数で表され,生産性はその地域の人口の増加関数となる.人々が立地選択をする際,生産性に与える影響は考慮しないため,ここで集積の正の外部性(集積の経済)が生じることになる.また,地域間の財の交易を考えない代わりに,地域間の生産技術のスピルオーバーを考えた.具体的には,各地域の生産性は自地域の人口だけなく,他地域の人口にも依存する状況を考えた.一方,人々が財を消費するためには域内輸送費などのコストを払わなければならず,このコストはその地域の人口の増加関数であると仮定した.人々が立地選択をする際,消費コストに与える影響は考慮しないため,ここで集積の負の外部性(混雑外部性)が生じることになる.定常均衡で人口集積が生じるか否かは,集積の正の外部性と負の外部性のトレード・オフが重要となる.モデルの時間軸に関しては,人々の寿命が不確実な,連続時間の重複世代モデルを考えた.
以上の定式化のもと,地域間人口分布が時間を通じて一定になる定常均衡に着目した.求める均衡はナッシュ均衡であるため,原則的には最適反応対応の不動点を求める必要があるが,ある条件のもとで,ポテンシャル関数と呼ばれる関数を作ることができ,定常均衡はポテンシャル関数最大化の一階条件に対応することを示した.すなわち,ポテンシャル関数を作ることができれば,その関数の性質を見ることで,全ての定常均衡を特徴付けることができる.また,ポテンシャル関数が存在するための条件に関しては,地域間の生産技術のスピルオーバーに対称性があることが必要十分条件であることを示した.
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
多地域経済成長モデルを組み,定常均衡の特徴付けを行うことが平成25年度の計画であったが,定常均衡をポテンシャル関数を用いて特徴付けることができた.
|
Strategy for Future Research Activity |
定常均衡の分析を完了したので、今後は非定常な均衡(地域間人口分布が時間を通じて変化していく均衡)を特徴付ける。また、均衡の一意性が保証されない場合は定常均衡の安定性についても議論していく。
本研究課題で考えている重複世代モデルでは,人々の寿命が指数分布に従うと仮定すれば地域間人口分布の均衡経路は完全予見動学(perfect foresight dynamics)に従う.これは,人々が将来期待を形成する場合の最適反応動学(best response dynamics)に対応するものである.したがって、定常均衡の安定性を分析する際,完全予見動学の研究で用いられている安定性概念(absorptionやaccessibility)を応用する。
解析的な分析を終えることができれば、地域間所得格差やネットワークなど現実問題との関連を踏まえながら,数値シミュレーションにより安定な均衡の性質をより詳しく見ていく。
|