• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Diamond Quantum Sensing

Research Project

  • PDF
Project/Area Number 26220602
Research Category

Grant-in-Aid for Scientific Research (S)

Allocation TypeSingle-year Grants
Research Field Nanostructural physics
Research InstitutionKeio University

Principal Investigator

Itoh Kohei  慶應義塾大学, 理工学部(矢上), 教授 (30276414)

Co-Investigator(Kenkyū-buntansha) 鹿田 真一  関西学院大学, 理工学部, 教授 (00415689)
原田 慶恵  大阪大学, 蛋白質研究所, 教授 (10202269)
渡邊 幸志  国立研究開発法人産業技術総合研究所, エレクトロニクス・製造領域, 主任研究員 (50392684)
Research Collaborator HAYASE junko (ISHI junko)  
UMEZAWA hitoshi  
Project Period (FY) 2014-05-30 – 2019-03-31
Keywords量子センサー / ナノテクノロジー / 磁気共鳴
Outline of Final Research Achievements

A single electron spin associated with a nitrogen-vacancy pair defect in diamond is used as a quantum sensor to realize a mission impossible by the classical means; measurement of the extremely small magnetic field arising from a single nuclear spin followed by quantum manipulation of the same nuclear spin (single nuclear spin magnetic resonance) to determine the exact position of the nuclear spin in the three-dimensional-space with the atomic-level (angstrom) spatial resolution. This level of atomic-scale magnetic resonance imaging (MRI) was performed at room temperature for the first time. In the course of reaching this goal, high quality NV sensor fabrication methods and a variety of a single electron and nuclear spin quantum manipulation protocols leading to quantum sensing was developed. In the area of biosensing, a temperature measurement within cells was demonstrated successfully while the original goal of sensing electric and magnetic field within cells was not achieved.

Free Research Field

量子情報

Academic Significance and Societal Importance of the Research Achievements

古典力学・電磁気学の考え方に基づく現在のセンシング技術の「測定感度」と「空間分解能」に関する原理的な限界が、量子力学の原理に基づく量子センシングで突破できることを実証実験として示したことは学術的に極めて意義深い。また、化学・創薬・医学分野の基礎研究や、産業・医療分野で日常的に利用される現在の核磁気共鳴(NMR)と磁気共鳴イメージング(MRI)手法を「単一分子」に適用することが不可能であるが、それが本研究で開発された量子イメージング手法を用いて可能となる。よって、この究極のナノテクノロジー・計測制御技術の開発は、学術的および社会的に意義深い。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi