• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Annual Research Report

Geometric study of Galois representations

Research Project

Project/Area Number 26247002
Research InstitutionThe University of Tokyo

Principal Investigator

斎藤 毅  東京大学, 大学院数理科学研究科, 教授 (70201506)

Project Period (FY) 2014-04-01 – 2019-03-31
Keywords特性サイクル / l進層
Outline of Annual Research Achievements

正標数の代数多様体上のエタール層の特性サイ クルを研究した.特異台の順像の次元が射の行き先の次元と一致する場合に,固有射による順像との両立性が前年度に証明できたので,論文を書いて投稿した.証明の方針は,次元に関する帰納法で曲線の準安定還元定理から導くというものである.必要な性質が示されていない点が有限個の場合に、大域的な性質から局所的な性質を導く、Deligneの方法を用いる.査読に時間がかかっているため,現時点でもまだ掲載予定になっていない.
離散付値体の分岐群の定義を大域化し,一般の付値環についても拡大体の整数環が完全交叉という強い条件を仮定すれば,同じ方法で分岐群が定義できることを証明した.この論文はすでに雑誌に掲載されている.Raynaudらによる被約ファイバー定理と、Temkinによる一般のスキーム上の曲線の準安定還元定理を用いて、離散付値環の場合と同様な議論が成立することを確認することで証明した.もっとも困難な混標数の場合の非対数的分岐群の次数商は今後の課題として残った.
有限体上の代数曲線についての幾何学的ラングランズ対応をテーマとし、若手の研究者を中心とする小規模な合宿生の国際研究集会を6月に東京大学玉原国際セミナーハウスで主催者として開催した.
このほか5月の函館、6月のパリ、7月の京都、8月のシカゴ、9月のニセコ、12月の京都、中国の三亜、2月と3月に東京で行われた数論幾何に関係する国際研究集会に参加し,その多くで特性サイクルに関する研究成果を発表した。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

整数環の拡大が完全交叉という条件のもとであったが、一般の付値環についても分岐群のフィルトレイションが定義されることが確認できた。この条件はその後、加藤氏とVaidehee Thatte氏の研究により、不要であることもわかった。

Strategy for Future Research Activity

本年度は次年度に繰越したため、本報告書を書いている現時点ですでに研究期間が終了しています。

  • Research Products

    (11 results)

All 2019 2018 2017

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (9 results) (of which Int'l Joint Research: 8 results,  Invited: 8 results) Funded Workshop (1 results)

  • [Journal Article] Ramification groups of coverings and valuations2019

    • Author(s)
      Takeshi Saito
    • Journal Title

      Tunisian Journal of Mathematics

      Volume: 1 Pages: 373-426

    • DOI

      dx.doi.org/10.2140/tunis.2019.1.373

    • Peer Reviewed
  • [Presentation] Characteristic cycle of an l-adic sheaf,2018

    • Author(s)
      Takeshi Saito
    • Organizer
      Tokyo-Lyon Satellite Conference in Number Theory
    • Int'l Joint Research / Invited
  • [Presentation] Characteristic cycles and the conductor of direct image2018

    • Author(s)
      Takeshi Saito
    • Organizer
      Motives in Tokyo on the occation of Shuji Saito's 60th Birthday
    • Int'l Joint Research / Invited
  • [Presentation] Characteristic cycle of an l-adic sheaf2017

    • Author(s)
      Takeshi Saito
    • Organizer
      Fukuoka International Conference on Arithmetic Geometry in 2017
    • Int'l Joint Research / Invited
  • [Presentation] On the characteristic cycle of an l-adic sheaf2017

    • Author(s)
      Takeshi Saito
    • Organizer
      Workshop on arithmetic geometry at Tambara 2017
    • Int'l Joint Research
  • [Presentation] Characteristic cycle of an l-adic sheaf2017

    • Author(s)
      Takeshi Saito
    • Organizer
      Algebraic Analysis in honor of Masaki Kashiwara's 70th birthday
    • Int'l Joint Research / Invited
  • [Presentation] Characteristic cycle of an l-adic sheaf2017

    • Author(s)
      Takeshi Saito
    • Organizer
      Algebraic Analysis and Representation Theory
    • Int'l Joint Research / Invited
  • [Presentation] Characteristic cycle of an l-adic sheaf2017

    • Author(s)
      Takeshi Saito
    • Organizer
      Regulators in Niseko 2017
    • Invited
  • [Presentation] Characteristic cycles and the conductor of direct image,2017

    • Author(s)
      Takeshi Saito
    • Organizer
      Interactions between Representation Theory and Algebraic Geometry,
    • Int'l Joint Research / Invited
  • [Presentation] Characteristic cycles and the conductor of direct image,2017

    • Author(s)
      Takeshi Saito
    • Organizer
      The Legacy of Carl Friedrich Gauss,
    • Int'l Joint Research / Invited
  • [Funded Workshop] Workshop on arithmetic geometry at Tambara 20172017

URL: 

Published: 2019-12-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi