• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Geometric study of Galois representations

Research Project

  • PDF
Project/Area Number 26247002
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionThe University of Tokyo

Principal Investigator

Saito Takeshi  東京大学, 大学院数理科学研究科, 教授 (70201506)

Research Collaborator Kato Kazuya  
Abbes Ahmed  
Project Period (FY) 2014-04-01 – 2019-03-31
Keywords特性サイクル / l進層 / エタール・コホモロジー / 分岐
Outline of Final Research Achievements

For an l-adic sheaf on algebraic variety of positive characteristic, I defined its characteristic cycle by determining the coefficients of irreducible components of the singular support defined by Beilinson, using the Milnor formula. Using the characteristic cycle, I proved the index formula computing the Euler number. Studying the compatibility with proper push-forward, I obtained an axiomatic characterization of characteristic cycles. With Yatagawa, I proved that the characteristic cycle is independent of l.
I constructed the filtration by ramification groups for a general valuation ring under the assumption that the integer ring is relatively of complete intersection.

Free Research Field

数論幾何学

Academic Significance and Societal Importance of the Research Achievements

幾何学の対象の局所的に定義される不変量から大域的な不変量の性質を導くことは,幾何学の基本的な問題であり,その典型的なものとして指数公式がある.代数解析学では,偏微分方程式の局所的な性質を表すものとしてその特性サイクルが余接束上に構成され,これについても指数公式が知られている.本研究で得られた成果は,この特性サイクルの構成を代数的に行うものであり,エタール・コホモロジーの理論の基本的な定理となるものである.さらに整数論的な方向への発展も期待される.

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi