2018 Fiscal Year Final Research Report
Thery and methods for high dimensional data analysis with internal structure
Project/Area Number |
26280009
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Partial Multi-year Fund |
Section | 一般 |
Research Field |
Statistical science
|
Research Institution | The Institute of Statistical Mathematics |
Principal Investigator |
Fukumizu Kenji 統計数理研究所, 数理・推論研究系, 教授 (60311362)
|
Co-Investigator(Kenkyū-buntansha) |
鈴木 大慈 東京大学, 大学院情報理工学系研究科, 准教授 (60551372)
小林 景 慶應義塾大学, 理工学部(矢上), 准教授 (90465922)
|
Project Period (FY) |
2014-04-01 – 2019-03-31
|
Keywords | 統計数学 / データ解析 / 高次元 / アルゴリズム |
Outline of Final Research Achievements |
The hub phenomenon has been analysed as an example of special properties of high-dimensional data, and a method of resolving hubs has been proposed. Methods of data analysis have been proposed for non-Euclidean data such as trees and points with skewed distance measures. Additionally, for a new method of density estimation of high-dimensional data, a kernel methods for constructing infinite dimensional exponential families has been proposed, and its estmation has been discussed.
|
Free Research Field |
機械学習
|
Academic Significance and Societal Importance of the Research Achievements |
ビッグデータ時代になり高次元で複雑なデータを扱う必要性が高まったが,そのようなデータの性質や解析法の関して,理論的な知見や有効な方法が成果として得られた.今後,さまざまな分野に現れる高次元データを扱う際にこれらの成果が貢献できると考える.
|