• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Implementation of massive parallel Evolutionaly Computation from Biological experiment data analysis obtained by wetGA

Research Project

  • PDF
Project/Area Number 26280095
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypePartial Multi-year Fund
Section一般
Research Field Soft computing
Research InstitutionTokyo Institute of Technology

Principal Investigator

Yamamura Masayuki  東京工業大学, 情報理工学院, 教授 (00220442)

Co-Investigator(Renkei-kenkyūsha) SAKAMOTO Kensaku  独立行政法人理化学研究所, 生命機能科学研究センター・非天然アミノ酸技術研究チーム, チームリーダー (50240685)
SOMEYA Hiroshi  東海大学, 情報理工学部, 准教授 (00333518)
Komiya Ken  東京工業大学, 情報理工学院, 助教 (20396790)
Project Period (FY) 2014-04-01 – 2018-03-31
KeywordsウェットGA / 超並列進化計算 / WetTDGA / 分子進化 / NK地形 / 疑似適応度 / パラメータ最適化 / 細胞シミュレーション
Outline of Final Research Achievements

Evolutionary Computation is an optimization search technique inspired by Biological Evolution. We inversely developed a molecular implementation of Evolutionary Computation, called wet GA, and applied it in Protein Engineering. This research shows the next stage of this Biology / Computer spiral. We improved conventional Evolutionary Computation models with the knowledge obtained by wet GA. We found the fact that can be hard to achieve expected performance even with massive parallelism. There is a trade-off between the population size, i.e. the degree of parallelism, and the generation number, i.e. the time to find the optimum. We examined the trade-off by using travelling salesman problems and typical function optimization problems. The results show that too much parallelism will become wasteful when the problem has a simple search landscape.

Free Research Field

DNAコンピューティング

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi