• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Studies on mechanisms for variability in Typhoon track forecasts

Research Project

  • PDF
Project/Area Number 26282111
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypePartial Multi-year Fund
Section一般
Research Field Natural disaster / Disaster prevention science
Research InstitutionKyoto University

Principal Investigator

Enomoto Takeshi  京都大学, 防災研究所, 准教授 (10358765)

Co-Investigator(Kenkyū-buntansha) 山崎 哲  国立研究開発法人海洋研究開発機構, アプリケーションラボ, 研究員 (20633887)
Research Collaborator Sato Kazutoshi  
Nakano Masuo  
Matsueda Mio  
Miyachi Tetsuro  
Yamaguchi Munehiko  
Yamane Shozo  
Yoshioka Hiroaki  
Yoshida Akira (Kuwano Akira)  
Project Period (FY) 2014-04-01 – 2019-03-31
Keywords熱帯低気圧 / 大気大循環モデル / 数値天気予報 / データ同化 / アンサンブル予報
Outline of Final Research Achievements

A cross analysis-model forecast system has been developed. Several research and operational atmospheric general circulation models and analyses were employed to conduct a number of forecast experiments, including Typhoon Yagi 2013, Super-typhoon Haiyan 2013 that caused damages in Philippines, and Typhoon Prapiroon 2018 that approached Japan prior to the heavy rainfall event in July 2018. Sensitivity to initial conditions and model and its resolution are clarified in these experiments. The improved ensemble data assimilation system were used to identify contributions to better forecasts including typhoon tracks. Parts of the studies conducted in this project contributed to the development of operational consensus and genesis forecasts of the Japan Meteorological Agency.

Free Research Field

大気シミュレーション

Academic Significance and Societal Importance of the Research Achievements

台風の発生予報や強度予報は,進路予報が正確であることを前提としており,台風に関する情報の中で進路予報は防災上最も重要なものと考えられる。近年台風の進路予報誤差は1日で平均100kmを下回る程度に改善されているが,時に大外しする事例が見られる。本研究では台風進路予測の誤差の要因を分析する手法を開発し,数々の事例に適用して誤差の特徴を明らかにした上で,気象庁が行う現業の台風予報の開発・改善を通じて社会的に貢献することができた。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi