2018 Fiscal Year Final Research Report
Geometric study of algebras attached to root systems
Project/Area Number |
26287004
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Partial Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Kyoto University |
Principal Investigator |
Kato Syu 京都大学, 理学研究科, 准教授 (40456760)
|
Project Period (FY) |
2014-04-01 – 2019-03-31
|
Keywords | 幾何学的拡大代数 / 半無限旗多様体 / affine Hecke代数 / 箙Hecke代数 / 一般Springer対応 / アフィン・グラスマン多様体 / コストカ多項式 / 非対称Macdonald多項式 |
Outline of Final Research Achievements |
In the first half of the research period, we have developed and polished the theory of geometric extension algebras from the both of the general theory and examples like quiver Hecke algebras and generalized Springer correspondence. In particulcar, we have revealed that quiver Hecke algebras possesses a structure similar to the classical theory of highest weight categories, and find that the orthogonality relation of Green functions arising from representation theory of Chevalley groups are direct corollaries of some orthogonality in the sense of homological algebras. This resolves several conjectures in this area.
In the latter half, we have studied the representation theory of current algebras and geometry of semi-infinite flag manifolds and affine Grassmanians. Although the setting is different, the pattern is similar here. Consequently we have proved several conjectures also in this area.
|
Free Research Field |
表現論
|
Academic Significance and Societal Importance of the Research Achievements |
表現論とは(群などの)対称性を固定してその実現がどの程度あるか分類し、それらの間の関係を研究する数学分野である。古典的には表現論が半単純、つまり任意の実現が原始的なもののの集まりとしてかける状況が大切であった(例えば、素粒子の分類などは実際にそのような現象と結びついている)。しかし、現実が素粒子や原子の単純な集まりとは異なり互いに干渉しあうように対称性も単純な集まりの間に相互関係がある場合が大切であることが分かってきた。本研究の成果はそのような相互関係がある対称性の理論を今までより一歩推し進め、異なる場所の間の相互関係も許すようなものを許容すると古典的な対称性もよりよくわかるというものである。
|