2018 Fiscal Year Final Research Report
Complexes on algebraic varieties and their moduli spaces
Project/Area Number |
26287007
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Partial Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Kobe University |
Principal Investigator |
Yoshioka Kota 神戸大学, 理学研究科, 教授 (40274047)
|
Project Period (FY) |
2014-04-01 – 2019-03-31
|
Keywords | モジュライ / 複体 |
Outline of Final Research Achievements |
We obtained some results on moduli of semi-stable sheaves on K3 surfaces and abelian surfaces. In particular we described the local structure of the singular points and get an example of strange duality. We also proved Kawamata-Morrison's cone conjectures for two series of irreducible symplectic manifolds of Beauville. For moduli spaces of stable sheaves on Enriques surfaces, we described the condition for the non-emptyness. We also obtained some results on the birational geometry of the moduli spaces by using Bridgeland stability conditions.
|
Free Research Field |
代数幾何
|
Academic Significance and Societal Importance of the Research Achievements |
安定層とそのモジュライ空間は微分幾何やYang-Mills理論(インスタントン)と関係し、様々な立場から研究されてきた。本研究では多くのよい性質をもつ曲面であるK3曲面、アーベル曲面、Enriques曲面に対し、そのモジュライ空間の性質を調べた。とくにEnriques曲面上の安定層についてはこれまで研究があまり進んでいなかったが、この研究で安定層の存在性やモジュライの既約性など基本的な問題に成果を得ることができた。
|