2019 Fiscal Year Final Research Report
Application of uniformity and hyper uniformity in sciences
Project/Area Number |
26310211
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Partial Multi-year Fund |
Section | 特設分野 |
Research Field |
Mathematical Sciences in Search of New Cooperation
|
Research Institution | Hiroshima University |
Principal Investigator |
|
Project Period (FY) |
2014-07-18 – 2020-03-31
|
Keywords | 準モンテカルロ法 |
Outline of Final Research Achievements |
Monte Carlo integration of a function f on a hypercube means to generate uniformly random sample points on the hypercube, and then take the average of the function evaluated at these points as a numerical approximation of the integration of f. Quasi-Monte Carlo integration is to choose hyper-uniform sample points to make the integration error smaller. Widely known point sets uses the t-value as a figure of merit. In this study we introduced "WAFOM with parameters" as a new figure of merit, and obtained hyper-uniform point sets according to this index. It is experimentally shown that the new point sets perform better than existing methods, for relatively smooth integrands
|
Free Research Field |
代数学
|
Academic Significance and Societal Importance of the Research Achievements |
モンテカルロ積分・準モンテカルロ積分は、高い次元の空間上の積分を行う際に有用であり、工学・科学・金融など幅広い応用を持つ。モンテカルロ積分法では、次元に無関係に誤差をサンプルポイント数の-0.5乗で小さくできるが、この誤差収束の遅さが問題となることも多い。本研究では、滑らかな関数に対しては誤差収束をNの-1乗以上に効率化する点集合の構成法を与えた。また、滑らかでない関数に対しても従来広く使われているlow discrepancy点集合と同程度の性能を持つことを実験的に示した。
|