• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2014 Fiscal Year Research-status Report

熱力学視点によるBayesモデル平均の新展開

Research Project

Project/Area Number 26330044
Research InstitutionKyushu University

Principal Investigator

大西 俊郎  九州大学, 経済学研究科(研究院), 准教授 (60353413)

Project Period (FY) 2014-04-01 – 2017-03-31
Keywords統計科学 / Bayesモデル平均 / Bayes予測 / モデル選択
Outline of Annual Research Achievements

申請者が2011-2013年度に行った基盤研究(C)「鞍点等式を用いたBayes推測の新展開」では,Bayesモデル平均をBayes予測問題として定式化し,次の双対な事実を得た:(i) e-ダイバージェンス損失の下ではBayesリスク最小化は制約付きShannonエントロピー最大化と等価である.また,尤度最大化はあるクラスの中で最悪の予測になる.(ii) m-ダイバージェンス損失の下ではBayesリスク最小化は制約付き尤度最大化と等価である.また,Shannonエントロピー最大化はあるクラスの中で最悪の予測になる.
本研究の目的は,上記の事実を熱力学的視点から発展・深化させることであり,本年度の成果は次の2点である:(1) 損失関数をα-ダイバージェンスに拡張することによって上記の事実を統一的に理解できるようになった.α-ダイバージェンスは,α=+1のときe-ダイバージェンスになり,α=-1のときm-ダイバージェンスになる.双対性としてとらえていた事実をパラメータαを+1から-1まで変化させることにより「連続変形」の形で理解できるようになった.(2) 尤度およびShannonエントロピーを一般化した概念としてダイバージェンス共役量を定義した.これは最適予測分布が満たす等式においてα-ダイバージェンス損失と釣り合う量であり,α=+1のとき尤度を導き,α=-1のときShannonエントロピーを導く.また,ダイバージェンス共役量を最大化するとあるクラスの中で最悪の予測になることを証明した.

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

交付申請書の「平成26年度の研究実施計画」欄で「損失関数を一般化し,Kullback-Leibler型損失以外の損失関数を採用した場合のモデル平均を研究する」と述べた.これをほぼ実行することができた.実際,α-ダイバージェンスを損失関数とする場合を議論し,尤度およびShannonエントロピーという統計学における基本概念に対する深い洞察が得られた.

Strategy for Future Research Activity

交付申請書の「平成27年度の研究実施計画」欄で,Bayesモデル間の順序関係がBayesモデル平均において重要な役割を果たす凸汎関数をどのように規定しているかを明らかにしたいと述べた.このチャレンジングなテーマに本格的に取り組みたいと考えている.

  • Research Products

    (8 results)

All 2015 2014

All Journal Article (2 results) (of which Peer Reviewed: 1 results,  Open Access: 2 results) Presentation (6 results)

  • [Journal Article] Permissible boundary prior function as a virtually proper prior density2014

    • Author(s)
      Takemi Yanagimoto, Toshio Ohnishi
    • Journal Title

      Annals of the Institute of Statistical Mathematics

      Volume: 66 Pages: 789-809

    • DOI

      10.1007/s10463-013-0421-1

    • Peer Reviewed / Open Access
  • [Journal Article] Bayes予測における尤度とエントロピーの双対性2014

    • Author(s)
      大西俊郎
    • Journal Title

      京都大学 数理解析研究所 講究録

      Volume: 1910 Pages: 29-42

    • Open Access
  • [Presentation] 変分的手法に基づく尤度およびエントロピーの拡張2015

    • Author(s)
      大西俊郎
    • Organizer
      Statistical Inference on Divergence Measures and Its Related Topics
    • Place of Presentation
      京都大学(京都府京都市)
    • Year and Date
      2015-03-10 – 2015-03-10
  • [Presentation] 経験ベイズモデルの超母数の最大ベイズ尤度推定2014

    • Author(s)
      柳本武美, 大西俊郎
    • Organizer
      科研費シンポジウム``空間データと災害の統計モデル"
    • Place of Presentation
      アクロス福岡(福岡県福岡市)
    • Year and Date
      2014-12-21 – 2014-12-21
  • [Presentation] Estimation of running distance of top tennis players from video images and its applications2014

    • Author(s)
      Toshio Sakata, Kosuke Okusa, Hiroyasu Sakamoto, Yukiyasu Yoshinaga, Toshio Ohnishi
    • Organizer
      The 7th International Conference of the European Research Consortium for Informatics and Mathematics Working Group on Computational and Methodological Statistics
    • Place of Presentation
      Pisa, Italy
    • Year and Date
      2014-12-07 – 2014-12-07
  • [Presentation] Duality between likelihood and entropy in Bayesian model averaging2014

    • Author(s)
      Toshio Ohnishi
    • Organizer
      International Statistical Institute Regional Statistics Conference
    • Place of Presentation
      Kuala Lumpur, Malaysia
    • Year and Date
      2014-11-18 – 2014-11-18
  • [Presentation] Bayesモデル平均における尤度とエントロピーの双対性2014

    • Author(s)
      大西俊郎, 柳本武美
    • Organizer
      統計関連学会連合大会
    • Place of Presentation
      東京大学(東京都文京区)
    • Year and Date
      2014-09-14 – 2014-09-14
  • [Presentation] ある混合の下でのベイスモデルの尤度2014

    • Author(s)
      柳本武美, 大西俊郎
    • Organizer
      統計関連学会連合大会
    • Place of Presentation
      東京大学(東京都文京区)
    • Year and Date
      2014-09-14 – 2014-09-14

URL: 

Published: 2016-05-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi