• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Effectiveness of cognitive-behavioral therapy in reducing self-stigma

Research Project

  • PDF
Project/Area Number 26380971
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Clinical psychology
Research InstitutionKyoto Women's University (2015-2018)
Kobe Yamate University (2014)

Principal Investigator

Shimotsu Sakie  京都女子大学, 発達教育学部, 准教授 (90392448)

Research Collaborator Horikawa Naoshi  
Project Period (FY) 2014-04-01 – 2019-03-31
Keywordsセルフスティグマ / 認知行動療法 / うつ病 / 認知再構成法 / 認知的スキーマ
Outline of Final Research Achievements

In this study, we aimed to examine the reduction in self-stigma by improving one’s cognitive schemata.This was done by evaluating the efficacy of a group cognitive-behavioral therapy (CBT) program, in reducing self-stigma. We administered a 10-session group CBT, focused on cognitive restructuring, to 50 patients with depression. Following this, participants exhibited significant improvements in depression, anxiety, and cognitive schemata and reductions in self-stigma. Cognitive schemata, especially the achievement factor, which is influenced by public opinions of oneself, is shown to have an effect on self-stigma In addition, it was clear that reduction in self-stigma is more influential in the immediate recovery of self-esteem, than improvement of depressive symptoms. A cognitive restructuring approach is effective in improving both emotional symptoms, and reducing self-stigma in patients with depression.

Free Research Field

臨床心理学

Academic Significance and Societal Importance of the Research Achievements

セルフスティグマが高いことは,自尊感情の低下や治療行動の不遵守といった精神疾患からの回復の妨害要因となることが示されてきた。本研究では,セルフスティグマ減少に効果のある具体的な介入手法の一部を明らかにすることができた。強いセルフスティグマをもつ患者に臨床場面で出会った際には,通常治療に加えて補足的に,セルフスティグマに関連する認知に対して認知再構成法を適用することの有用性が示された。セルフスティグマの減少によって自尊感情の回復が促され,患者の広範囲の生活の質の向上をもたらす可能性があることが示唆された。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi