• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2016 Fiscal Year Final Research Report

Research on code vertex operator algebras using parafermion algebras

Research Project

  • PDF
Project/Area Number 26400040
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionHitotsubashi University

Principal Investigator

YAMADA Hiromichi  一橋大学, 名誉教授 (50134888)

Research Collaborator ARAKAWA Tomoyuki  京都大学, 数理解析研究所, 准教授 (40377974)
YAMAUCHI Hiroshi  東京女子大学, 現代教養学部, 准教授 (40452213)
Lam Ching Hung  Academia Sinica, 教授
Project Period (FY) 2014-04-01 – 2017-03-31
Keywords頂点作用素代数 / パラフェルミオン代数 / アフィンリー代数 / W代数 / 格子 / コード
Outline of Final Research Achievements

A rank 1, type A, level k parafermion vertex operator algebra is defined as the commutant of the Heisenberg algebra in the integrable representation of a rank 1, type A affine Lie algebra at level k, which is a C2-cofinite and rational vertex operator algebra. The parafermion vertex operator algebra has k simple currents and there is a Zk-symmetry in the fusion rules among them. Using a Zk-code and those simple currents, a new series of C2-cofinite and rational vertex operator algebras is constructed.

Free Research Field

数物系科学

URL: 

Published: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi