2016 Fiscal Year Final Research Report
Research on code vertex operator algebras using parafermion algebras
Project/Area Number |
26400040
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Hitotsubashi University |
Principal Investigator |
|
Research Collaborator |
ARAKAWA Tomoyuki 京都大学, 数理解析研究所, 准教授 (40377974)
YAMAUCHI Hiroshi 東京女子大学, 現代教養学部, 准教授 (40452213)
Lam Ching Hung Academia Sinica, 教授
|
Project Period (FY) |
2014-04-01 – 2017-03-31
|
Keywords | 頂点作用素代数 / パラフェルミオン代数 / アフィンリー代数 / W代数 / 格子 / コード |
Outline of Final Research Achievements |
A rank 1, type A, level k parafermion vertex operator algebra is defined as the commutant of the Heisenberg algebra in the integrable representation of a rank 1, type A affine Lie algebra at level k, which is a C2-cofinite and rational vertex operator algebra. The parafermion vertex operator algebra has k simple currents and there is a Zk-symmetry in the fusion rules among them. Using a Zk-code and those simple currents, a new series of C2-cofinite and rational vertex operator algebras is constructed.
|
Free Research Field |
数物系科学
|