• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Representations of group rings and Auslander-Reiten quivers

Research Project

  • PDF
Project/Area Number 26400051
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionNagoya City University (2016-2017)
Osaka City University (2014-2015)

Principal Investigator

KAWATA Shigeto  名古屋市立大学, 大学院システム自然科学研究科, 教授 (50195103)

Co-Investigator(Renkei-kenkyūsha) KANEDA Masaharu  大阪市立大学, 大学院理学研究科, 教授 (60204575)
FURUSAWA Masaaki  大阪市立大学, 大学院理学研究科, 教授 (50294525)
BABA Yoshitomo  大阪教育大学, 教育学部, 教授 (10201724)
Project Period (FY) 2014-04-01 – 2018-03-31
Keywords有限群 / 表現 / Auslander-Reiten有向グラフ
Outline of Final Research Achievements

Let G be a finite group and R a complete discrete valuation ring with residue class field k of positive characteristic. Suppose that a block B of the group ring RG is of infinite representation type. Let L be an indecomposable B-lattice, and let C be the stable component of the Auslander-Reiten quiver of B containing L. Assume that the reduced kG-module M of L is indecomposable. Then, we have proved that the tree class of C is A-infinity if L is of height 0. Also, we have shown that if L and M have the same vertex Q, then the vertex of C is Q.

Free Research Field

有限群の表現論

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi