• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Induced torsion structures on triangulated categories

Research Project

  • PDF
Project/Area Number 26400052
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionOsaka Prefecture University

Principal Investigator

Kato Kiriko  大阪府立大学, 理学(系)研究科(研究院), 准教授 (00347478)

Research Collaborator Jorgensen P.  Newcastle大学, 数学統計科, 教授
Christensen L. W.  Texas工科大学, 数学統計科, 教授
NAKAOKA Hiroyuki  鹿児島大学, 理学部, 准教授
IIMA Kei-ichiro  国立奈良高専, 一般科, 准教授
ENOMOTO Haruhisa  
NAKAMURA Tsutomu  
MATSUI Hiroki  
OGAWA Yasuaki  
KUBO Yuki  
HIRAYAMA Yukio  
Project Period (FY) 2014-04-01 – 2018-03-31
Keywords環論 / ホモロジー代数 / 圏論
Outline of Final Research Achievements

If a triangulated category has a torsion pair, then it is a category of extensions of subcategories. Decomposition into subcategories makes analysis simpler. Sometimes existence of torsion pairs may characterize categories. Our results consist mainly of two points: (1) We studied generalized torsion pairs with milder condition on orthogonality. We showed that they correspond with torsion pairs of quotient categories. (2) We are interested in categories of N-complexes since it has N-gons of recollements which is multiplied and recursive recollements. As a consequence, we showed that a derived category of N-complexes over a ring is triangle equivalent to that of ordinary (2-)complexes of upper triangular matrix rings over the ring.

Free Research Field

代数学

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi