• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Applications of real singularity theory and the homotopy types of spaces of holomorphic maps

Research Project

  • PDF
Project/Area Number 26400083
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionThe University of Electro-Communications

Principal Investigator

YAMAGUCHI Kohhei  電気通信大学, 大学院情報理工学研究科, 教授 (00175655)

Co-Investigator(Kenkyū-buntansha) Guest Martin  早稲田大学, 理工学術院, 教授 (10295470)
山田 裕一  電気通信大学, 大学院情報理工学研究科, 教授 (30303019)
島川 和久  岡山大学, 自然科学研究科, 特命教授 (70109081)
大野 真裕  電気通信大学, 大学院情報理工学研究科, 准教授 (70277820)
Project Period (FY) 2014-04-01 – 2018-03-31
Keywordsホモトピー型 / 正則写像 / 複素多様体 / 実代数的多様体 / トーリック多様体 / 終結式 / 手術 / 実特異点
Outline of Final Research Achievements

For complex manifolds X and Y (resp. real algebraic varieties X and Y), let Hol(X,Y) (resp. Alg(X,Y)) denote the space of holomorphic maps (resp. algebraic maps represented by polynomials) from X to Y. In this situation, we consider the inclusion map from Hol(X,Y) or Alg(X,Y) into the space Map(X,Y) of all continuous maps from X to Y, and we would like to investigate what dimension this inclusion map approximates the infinite dimensional space Map(X,Y). This problem is called the Atiyah-Jones-Segal conjecture. In particular, in this research we generalize the result of G. Segal concerning to the space of rational functions.

Free Research Field

幾何学(トポロジー)

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi