2017 Fiscal Year Final Research Report
Applications of real singularity theory and the homotopy types of spaces of holomorphic maps
Project/Area Number |
26400083
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | The University of Electro-Communications |
Principal Investigator |
YAMAGUCHI Kohhei 電気通信大学, 大学院情報理工学研究科, 教授 (00175655)
|
Co-Investigator(Kenkyū-buntansha) |
Guest Martin 早稲田大学, 理工学術院, 教授 (10295470)
山田 裕一 電気通信大学, 大学院情報理工学研究科, 教授 (30303019)
島川 和久 岡山大学, 自然科学研究科, 特命教授 (70109081)
大野 真裕 電気通信大学, 大学院情報理工学研究科, 准教授 (70277820)
|
Project Period (FY) |
2014-04-01 – 2018-03-31
|
Keywords | ホモトピー型 / 正則写像 / 複素多様体 / 実代数的多様体 / トーリック多様体 / 終結式 / 手術 / 実特異点 |
Outline of Final Research Achievements |
For complex manifolds X and Y (resp. real algebraic varieties X and Y), let Hol(X,Y) (resp. Alg(X,Y)) denote the space of holomorphic maps (resp. algebraic maps represented by polynomials) from X to Y. In this situation, we consider the inclusion map from Hol(X,Y) or Alg(X,Y) into the space Map(X,Y) of all continuous maps from X to Y, and we would like to investigate what dimension this inclusion map approximates the infinite dimensional space Map(X,Y). This problem is called the Atiyah-Jones-Segal conjecture. In particular, in this research we generalize the result of G. Segal concerning to the space of rational functions.
|
Free Research Field |
幾何学(トポロジー)
|