2016 Fiscal Year Final Research Report
Topology of discrete groups and growth series
Project/Area Number |
26400086
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | University of the Ryukyus (2016) Kyoto University (2014-2015) |
Principal Investigator |
|
Co-Investigator(Renkei-kenkyūsha) |
SATOH Takao 東京理科大学, 第二理学部, 講師 (70533256)
KAWAZUMI Nariya 東京大学, 大学院数理科学研究科, 准教授 (30214646)
SAITO Kyoji 東京大学, 数物連携宇宙研究機構, 主任研究員 (20012445)
|
Project Period (FY) |
2014-04-01 – 2017-03-31
|
Keywords | 増大級数 / 有限生成群 / 有理関数表示 / トーラス結び目群 / ケーリー・グラフ / オートマトン |
Outline of Final Research Achievements |
The head investigator Fujii obtained several results concerning the growth series for a group G(p,q), which is determined if arbitrary integers greater than or equal to two, p and q, are given. First, Fujii described a necessary and sufficient condition for a representative of an element g of G(p,q) to be shortest among all representatives of g. Next, Fujii gave a rational function expression for the spherical growth series for G(p,q). Moreover, Fujii constructed a finite state automaton which accepts all of the shortest representatives of G(p,q), and obtained a rational function expression for the geodesic growth series for G(p,q).
|
Free Research Field |
位相幾何学
|