• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Riemann surfaces and low dimensional manifolds

Research Project

  • PDF
Project/Area Number 26400095
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionGakushuin University

Principal Investigator

Matsumoto Yukio  学習院大学, 理学部, 研究員 (20011637)

Co-Investigator(Renkei-kenkyūsha) Ashikaga Tadashi  東北学院大学, 工学部, 教授 (90125203)
Komori Yohei  早稲田大学, 教育総合科学学術院, 教授 (70264794)
Ohmoto Toru  北海道大学, 理学研究科, 教授 (20264400)
Project Period (FY) 2014-04-01 – 2018-03-31
Keywordsリーマン面 / ドリーニュ・マンフォードコンパクト化 / オービフォールド / 結晶群
Outline of Final Research Achievements

It is known that the moduli space of Riemann surfaces admits a natural compactification called the Deligne-Mumford compactification (DM-compactification). The main result of the present research is that we explicitly constructed a "natural" atlas consisting of orbifold charts on the DM-compactification of moduli space. These charts are indexed by the simplices of Harvey's curve complex. As a byproduct of the result, we discovered that certain higher dimensional euclidean crystallographic groups are attached to those orbifold charts that are indexed by the simplices of the maximum dimension. The theoretical meaning of this attachment of crystallographic groups will be studied in the future.

Free Research Field

多様体のトポロジー

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi