• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2014 Fiscal Year Research-status Report

対称空間上のシュレディンガー方程式の幾何解析的構造の解明とその応用

Research Project

Project/Area Number 26400116
Research InstitutionOkayama University

Principal Investigator

筧 知之  岡山大学, 自然科学研究科, 教授 (70231248)

Project Period (FY) 2014-04-01 – 2017-03-31
Keywords対称空間 / シュレディンガー方程式 / ガウス和
Outline of Annual Research Achievements

平成26年度の研究実績は下記の通りである。(1)ルート系が偶数重複度条件を満たすようなコンパクト対称空間上のシュレディンガー方程式の基本解を用いて、有理数時間における自由粒子の位置に関する未来予測公式を導いた。これは、過去の有理数時間における自由粒子の情報から、未来の有理数時間における自由粒子の位置およびエネルギーの決定を可能にするものである。従来のシュレディンガー方程式の理論から導かれる結論は、過去の粒子の情報から未来の粒子の位置や速度は決定できない、というものである。しかし、ある特殊な条件下では、粒子の未来における位置と速度を決定することが可能であることを示した点でこの結果の意義は大きいと言える。なお、証明には一般化されたガウス和という数論的な量を用いる。上記のガウス和はルート系から定めるものであるが、これに表現論、特に、ヘックマン・オプダムの理論とを組み合わせることで未来予測公式が得られる。この結果については、サンクトペテルスブルクのオイラー数学研究所で2014年8月に開催された国際研究集会
「INVERSE PROBLEM AND RELATED TOPICS」を始めとする幾つかの研究集会で発表した。現在、論文を準備中である。(2)コンパクト対称空間上の磁場を持つシュレディンガー方程式について研究を行い、零エネルギー条件の仮定の下で上記シュレディンガー方程式の基本解の台および特異台の構造を決定した。また、関連することであるが、無限回微分可能な関数の空間におけるシュレディンガー型方程式のwellposednessの問題を考察し、ある種のコンパクト対称空間上では零エネルギー条件と上記のwellposednessが同値であることを証明した。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

研究開始から1年経過した時点で論文を書く目途がついたため。

Strategy for Future Research Activity

基本的に、申請時の計画に従っておこなう。

Causes of Carryover

効率的な執行に努めた結果、一部、来年度へ繰り越すことになった。

Expenditure Plan for Carryover Budget

必要に応じて、物品の購入へ充てる予定である。

  • Research Products

    (2 results)

All 2014

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (1 results) (of which Invited: 1 results)

  • [Journal Article] Schroedinger equations on compact symmetric spaces and Gauss sums2014

    • Author(s)
      Tomoyuki KAKEHI
    • Journal Title

      Advanced Studies in Pure Mathematics

      Volume: 64 Pages: 311-318

    • Peer Reviewed
  • [Presentation] Fundamental solution of the Schroedinger equation on symmetric spaces2014

    • Author(s)
      Tomoyuki KAKEHI
    • Organizer
      INTERNATIONAL CONFERENCE INVERSE PROBLEM AND RELATED TOPICS
    • Place of Presentation
      Euler Mathematical Institute
    • Year and Date
      2014-08-18 – 2014-08-22
    • Invited

URL: 

Published: 2016-05-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi