• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2016 Fiscal Year Final Research Report

Study of the Analysis on Manifolds

Research Project

  • PDF
Project/Area Number 26400124
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionTokyo University of Science

Principal Investigator

Furutani Kenro  東京理科大学, 理工学部数学科, 教授 (70112901)

Co-Investigator(Renkei-kenkyūsha) Iwasaki Chisato  兵庫県立大学, 物質理学研究科, 特命教授 (30028261)
Tamura Mitsuji  東京理科大学, 理工学部, 助教 (60536548)
Research Collaborator Bauer Wolfram  ハノーバ大学, 教授
Markina Irina  ベルゲン大学, 教授
Vasiliev Alexander  ベルゲン大学, 教授
Tamura Mitsuji  
Project Period (FY) 2014-04-01 – 2017-03-31
Keywords関数解析学 / 大域解析学 / non-holonomic structure / 劣楕円型作用素 / Grushin type operator / spectral zeta function / heat kernel / 国際共同研究
Outline of Final Research Achievements

(1) We proved the existence of integral lattices in the Lie groups attached to Clifford algebras and their admissible modules and classified them corresponding to minimal admissible modules. Also we studied the spectral zeta function of the sub-Laplacians on some of their Lie groups and their compact quotients by lattices which we proved the existence. (2) We constructed Green kernels for higher step Grushin operators coming from sub-Laplacians on higher step nilpotent Lie groups (Carnot groups) by two different methods. (3) A relation of the homogeneous first integrals of a sub-Laplacian and the related Grushin type operator through a submersion was proved in the framework of the pseudo-differential operator theory. (4) We constructed a codimension 3 sub-Riemannian structure on the Gromoll-Meyer exotic 7 sphere.

Free Research Field

数学

URL: 

Published: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi