2017 Fiscal Year Final Research Report
Researches on holomorphic mapings of Riemann surfaces---existence of mappings and conformal invariants
Project/Area Number |
26400140
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Basic analysis
|
Research Institution | Yamaguchi University |
Principal Investigator |
MASUMOTO Makoto 山口大学, 大学院創成科学研究科, 教授 (50173761)
|
Co-Investigator(Kenkyū-buntansha) |
柴 雅和 広島大学, 工学研究科, 名誉教授 (70025469)
山田 陽 東京学芸大学, 教育学部, 名誉教授 (60126331)
柳原 宏 山口大学, 大学院創成科学研究科, 教授 (30200538)
中村 豪 愛知工業大学, 工学部, 教授 (50319208)
郷間 知巳 山口大学, 大学院創成科学研究科, 助手 (70253135)
|
Project Period (FY) |
2014-04-01 – 2018-03-31
|
Keywords | リーマン面 / 正則写像 / 等角写像 / 極値的長さ / 双曲的長さ / 穴あきトーラス |
Outline of Final Research Achievements |
A once-holed torus is, by definition, a Riemann surface homeomorphic to a once-punctured torus. The space T of once-holed tori with marked handle is identified with a smooth closed domain in the 3-dimensional euclidean space. Now, fix a Riemann surface Y with marked handle. We investigate the set A of elements X in T which allow holomorphic mappings into Y, and prove that it is a closed domain with Lipschitz boundary and is homeomorphic to T. Moreover, the boundary of A is not smooth in some cases. We also consider the set B of of elements X in T that are conformally embedded into Y, and obtain similar results for B.
|
Free Research Field |
数物系科学
|