• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Combination of finite element exterior calculus and discrete mechanics

Research Project

  • PDF
Project/Area Number 26400200
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Foundations of mathematics/Applied mathematics
Research InstitutionKobe University

Principal Investigator

Yaguchi Takaharu  神戸大学, システム情報学研究科, 准教授 (10396822)

Project Period (FY) 2014-04-01 – 2019-03-31
Keywords有限要素外積解析 / 離散力学 / エネルギー保存型数値解法 / 変分原理 / 解析力学
Outline of Final Research Achievements

In this study, we combined the finite element external calculus and the structural-preserving numerical methods derived by discrete mechanics. First, as a significant result from the theoretical perspective, we derived a variational problem for Hamilton equations in which that by the finite element exterior calculus is naturally integrated. Also, we proposed a method to derive structure-preserving numerical schemes based on this variational problem. From the practical perspective, we proposed a method to avoid the computation of the space of discrete harmonic forms, which was necessary in the numerical calculations in the finite element exterior calculus. By using this method, the computational costs required by the numerical scheme can be significantly reduced.

Free Research Field

数値解析

Academic Significance and Societal Importance of the Research Achievements

有限要素外積解析は,主に電磁波のシミュレーションで用いられるシミュレーション手法に関する最新の研究である.この理論は,電磁波の物理学の背景に存在する幾何学的な構造をうまく取り入れてシミュレーションを行う方法であり,従来法では計算が困難であった様々な現象に対して有効なシミュレーション手法を導出する.一方,この方法は,基本的に静電場解析を対象としており,時間の経過とともに変化する現象については適用が困難であった.本研究では,この手法を離散版の解析力学の枠組みに組み込むことで,時間変化する現象に拡張したものである.

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi