• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2016 Fiscal Year Final Research Report

Stochastic analytic study on Kardar-Parisi-Zhang equation

Research Project

  • PDF
Project/Area Number 26610019
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field Basic analysis
Research InstitutionThe University of Tokyo

Principal Investigator

Funaki Tadahisa  東京大学, 大学院数理科学研究科, 教授 (60112174)

Co-Investigator(Renkei-kenkyūsha) MATANO HIROSHI  東京大学, 大学院数理科学研究科, 教授 (40126165)
SASADA Makiko  東京大学, 大学院数理科学研究科, 准教授 (00609042)
OSADA HIROFUMI  九州大学, 大学院数理学研究院, 教授 (20177207)
KUMAGAI Takashi  京都大学, 数理解析研究所, 教授 (90234509)
OTOBE YOSHIKI  信州大学, 理学部, 准教授 (30334882)
XIE BIN  信州大学, 理学部, 准教授 (50510038)
Research Collaborator SPOHN Herbert  ミュンヘン工科大学, 名誉教授
QUASTEL Jeremy  トロント大学, 教授
WEBER Hendrik  ウォーリック大学, 講師
Project Period (FY) 2014-04-01 – 2017-03-31
Keywords確率論 / 解析学 / 統計力学 / 数理物理 / 関数方程式論
Outline of Final Research Achievements

Kardar-Parisi-Zhang (KPZ) equation is a nonlinear stochastic partial differential equation which describes an evolution of growing interfaces with fluctuation. Mathematically, this equation involves a divergent term so that it is ill-posed, but Hairer, a Fields medalist, introduced a method of renormalization which removes the divergent term and gave a mathematical meaning to it. In this research project, we have specified the stationary measures of KPZ equation and multicomponent coupled KPZ equation, and shown the global solvability in time. Moreover, we have found new determinantal structures in related interacting infinite particle systems.

Free Research Field

確率論

URL: 

Published: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi