2016 Fiscal Year Annual Research Report
On Algorithmic Approaches to Proving Circuit Lower Bounds
Project/Area Number |
26730007
|
Research Institution | Seikei University |
Principal Investigator |
脊戸 和寿 成蹊大学, 理工学部, 講師 (20584056)
|
Project Period (FY) |
2014-04-01 – 2017-03-31
|
Keywords | 充足可能性問題 / 回路計算量 / 閾値回路 / 分岐プログラム |
Outline of Annual Research Achievements |
本研究の目的は計算量クラスのTC0とNEXPの分離である.TC0とは多項式サイズの定数段数閾値回路で計算可能な論理関数の集合である.定数段数閾値回路とは,入力数が無制限のAND素子,OR素子と閾値素子,単入力のNOT素子で構成される段数が定数の回路である.与えられた定数段数閾値回路が1を出力するような割当が存在するかどうかを判定する充足可能性問題を本研究では扱う.この問題に対して,全探索よりも非自明に高速なアルゴリズムを設計することが本研究の目標であった.最終的にこの目標を達成することは出来なかったが部分的な解決をすることができた.
最終年度(平成28年度)は対称関数(閾値関数も含む)を一定数含む定数段数回路の充足可能性問題について,全探索アルゴリズムよりも非自明に高速なアルゴリズムを設計した.このアルゴリズムは最大充足可能性問題の非自明なアルゴリズムにもなっており,これまで知られていなかった結果を示すことができた.また,アルゴリズムの計算時間の解析に伴い,これまで通信計算量の手法を用いて証明されていた回路計算量の下界に対して,別証明を与えることに成功した. この結果とは別にk回読み分岐プログラムに対する充足可能性問題について非自明なアルゴリズムを設計することに成功した.これは前年度に示したk-IBDDという分岐プログラムよりも更に強い計算能力をもつ論理関数のクラスに対して,充足可能性問題が高速にとけることを示した結果となっている.分岐プログラムの充足可能性問題を考えることは,NC1とNEXPの分離にもつながることから,そのステップとなる結果であると考えられる.
|