• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Research-status Report

p進体上のユニタリ群の数論的因子

Research Project

Project/Area Number 26800022
Research InstitutionOsaka Prefecture University

Principal Investigator

宮内 通孝  大阪府立大学, 高等教育推進機構, 教育拠点形成教員 (70533644)

Project Period (FY) 2014-04-01 – 2018-03-31
KeywordsL関数 / ε因子
Outline of Annual Research Achievements

不分岐 U(2,1) のスーパーカスピダル表現の L 関数に関する研究を進めた。これまでにニューベクトルが知られている群では、スーパーカスピダル表現の L 関数は 1 であった。不分岐 U(2,1) の場合は、理論的に 1 または自明表現の Tate L 関数であることまでしか絞り込めていなかった。局所 Langlands 予想による表現の分類から、これらの両方ともが起こり得ると推測される。今年度の研究では深さ零のスーパーカスピダル表現の L 関数を計算し、 1 または自明表現の Tate L 関数の両方が出現することを確かめた。

Current Status of Research Progress
Current Status of Research Progress

3: Progress in research has been slightly delayed.

Reason

深さ零のスーパーカスピダル表現の L 関数を計算したが、これはスーパーカスピダル表現のごく一部である。そのほかのスーパーカスピダル表現の L 関数については計算ができていない。また深さ零表現の場合でも、Langlands 予想に適した形での記述がまだ完成していない。

Strategy for Future Research Activity

深さ零表現については、有限群の Deligne-Lusztig 理論の指標を用いて記述をし直し、Langlands 予想に適した形に結果をまとめなおす。
残りのスーパーカスピダル表現について。3 拡大に付随する表現については L 関数は 1 であると予想され、この場合は一般線形群のスーパーカスピダル表現と近いので、一般線形群の理論を見直し、Hecke 作用素の計算を行う。それ以外のスーパーカスピダル表現については構成が単純な方から片付けたい。

Causes of Carryover

研究集会への参加と研究打ち合わせの回数が予定より少なかったため。

Expenditure Plan for Carryover Budget

共同研究に関する打ち合わせの旅費として使用する。

  • Research Products

    (2 results)

All 2015

All Presentation (2 results)

  • [Presentation] Newforms for ramified U(2,1)2015

    • Author(s)
      宮内通孝
    • Organizer
      保型形式リトリート討論会
    • Place of Presentation
      セミナーカルチャーセンター臨湖(滋賀県長浜市)
    • Year and Date
      2015-09-03 – 2015-09-03
  • [Presentation] Newforms for ramified U(2,1)2015

    • Author(s)
      宮内通孝
    • Organizer
      神戸整数論ミニ集会
    • Place of Presentation
      神戸大学大学院理学研究科(兵庫県神戸市)
    • Year and Date
      2015-05-21 – 2015-05-21

URL: 

Published: 2017-01-06  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi