• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1988 Fiscal Year Annual Research Report

一次元電子伝達系としての分子集合体の設計と化学反応への応用

Research Project

Project/Area Number 61550677
Research InstitutionOsaka University

Principal Investigator

古江 正興  大阪大学, 理学部, 助手 (30028245)

Keywordsルテニウム錯体 / ルテニウム錯体ダイマー / 分子内エネルギー移動 / オスミウム錯体 / 複核錯体 / フェルスター機構 / 人工光合成系 / 光合成電子伝達
Research Abstract

エネルギーや電子移動、電荷分離を促進する目的で、光増感剤や光酸化還元系を分子集合体に組み込み、その励起状態の性質を検討して来た。
1.トリスビピリジンルテニウム(II)錯体を炭素鎖2および3個で結合させたダイマーを合成、その励起状態の性質および光増感電子移動反応を検討した。ダイマー系ではその励起寿命がモノマー系よりも長く、無輻射失活が防がれることが明らかとなった。これは芳香族炭化水素やポルフィリン系とは異なる挙動で、分子の形状や立体配置が励起状態に大きな影響を与えることが明らかとなった。ビオロゲン化合物との光増感電子移動の研究から、集合体の荷電の集合が反応の素過程に影響を与えること、集合体におけるエネルギー移動が存在しないことを示した。
2.ルテニウムおよびオスミウムを含む複核錯体を合成し、その励起状態の性質を検討した。この複核錯体において励起ルテニウム錯体がオスミウムにより分子内過程で効率よく消光されることを見い出した。この消光過程が酸化的消光ではなくエネルギー移動消光であることを発光強度および寿命の測定から示し、その速度定数を決定した。
3.ルテニウムおよびオスミウム復核錯体の励起寿命の精密な測定より、錯体間距離とエネルギー移動速度の関係、溶媒の粘度と速度の関係を求めた。その結果、このエネルギー移動が錯体の衝突が関与したDexter機構ではなく、双極子ー双極子相互作用によるForster機構であると結論した。
4.ルテニウムおよびオスミウム複核錯体がアニオン性高分子電解質存在下でビオロゲンに対する光還元剤として働き、複核錯体内の分子内電子移動が光還元効率の向上に結びつき、電荷分離促進に寄与した。これは天然における光合成系の電子伝達系の一つのモデルと考えられる。

  • Research Products

    (3 results)

All Other

All Publications (3 results)

  • [Publications] Masaoki Furue;Noritaka Kuroda;Shun'ichi Nozakura: Chem.Lett.1209-1212 (1986)

  • [Publications] Masaoki Furue;Shuichi Kinoshita;Takashi Kushida: Chem.Lett.2355-2358 (1987)

  • [Publications] Masaoki Furue;Noritaka Kuroda;Shiho Sano: J.Macromol.Sci.-Chem.A25. 1263-1274 (1988)

URL: 

Published: 1990-03-20   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi