• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1988 Fiscal Year Final Research Report Summary

Study on the structure of generalized Lie triple systems.

Research Project

Project/Area Number 62540050
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field 代数学・幾何学
Research InstitutionHIROSHIMA UNIVERSITY

Principal Investigator

YAMAGUCHI Kiyosi  Fac. of School Education, Hiroshima University, Prof., 学校教育学部, 教授 (20040090)

Co-Investigator(Kenkyū-buntansha) IKEDA Akira  Fac. of School Education, Hiroshima University, Prof., 教校教育学部, 助教授 (30093363)
KAGEYAMA Sanpei  Fac. of School Education, Hiroshima University, Prof., 学校教育学部, 助教授 (70033892)
ISHIBASHI Yasunori  Fac. of School Education, Hiroshima University, Prof., 学校教育学部, 教授 (30033848)
SHINTANI Naoyoshi  Fac. of School Education, Hiroshima University, Prof., 学校教育学部, 教授 (90033802)
NASU Toshio  Fac. of Education, Hiroshima University, Prof., 教育学部, 教授 (90033026)
Project Period (FY) 1987 – 1988
KeywordsGeneralized Lie triple system / Generalized J-ternary system / Freudenthal-Kantor pair / Lie algebra / Lie superalgebra / 結合的三項系
Research Abstract

A generalized lie triple system(GLTS) is an algebraic system with a bilinear alternative product and a trilinear product satisfying some conditions. GLTS is the tangent algebra at eh of the reductive homogeneous space G/H and GLTS is a generalization of a Lie algebra and a Lie triple system. We reneralize the notion of GLTS as the quadruple of lie algebra L, a certain algebraic system B with bilinear and trilinear product, a special representation of lie algebra L into B, and a certain bilinear mapping of B into L, then it is shown that a lie algebra is constructed from this quadruple. Some examples of GLTS are constructed.
From a commutative associative triple pair and a generalized J-(super) ternary pair, by considering their tensor product, a new generalized J-(super) ternary pair is obtaines( with H. Tanabe ).
For two commutative associative triple systems A_1, A_2 and a Freudenthal-kantor (super) triple system U (- , ), = 1, the tensor product A_1 U(- , ) A_2 becomes a Lie triple system or anti-Lie triple system, hence the Lie algebra and lie superalgebra are obtained as the imbedding lie (super)algebra according to =1 and -1. The tripleness in the mathematics education was also studied.

  • Research Products

    (9 results)

All Other

All Publications (9 results)

  • [Publications] YAMAGUTI,Kiyosi;TANABE,Hiromasa: Bull.Fac.School Educ.,Hiroshima Univ.,Part II. 10. 43-61 (1987)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] YAMAGUTI,Kiyosi: Group Theoretical Methods in Physics,Proc.XVI International Colloq.held at Varna,Bulgaria,June 15ー29,1987.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 山口清: 数学教育学研究紀要(西日本数学教育学会). 14. 102-109 (1988)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 山口清: 数学教育学研究紀要(西日本数学教育学会).

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] YAMAGUCHI, Kiyosi; TANABE, Hiromasa: "A construction of generalized J-(super)ternary pairs from generalized J-(super)ternary pairs." Bulletin of the Faculty of School Education, Hiroshima University. Part II.10. 43-61 (1987)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] YAMAGUCHI, Kiyosi: "Constructions of Lie (super)algebras from triple systems." Submitted in Group Theoretical Methods in Physics, Proceedings of the XVI International Colloquium held at Varna, Bulgaria, June 15-20, 1987.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] YAMAGUCHI, Kiyosi: "A construction of Lie (super)algebras from associative triple systems and Freudenthal-Kantor (super)triple systems."

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] YAMAGUCHI, Kiyosi: "Some examples of generalized Lie triple systems."

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] YAMAGUCHI, Kiyosi: "On the tripleness arising from the mathematics in senior high school and freshman course at university." Bulletin of WJASME: Research in Mathematics Education.14. 102-109 (1988)

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1990-03-20  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi