• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

1989 Fiscal Year Final Research Report Summary

Properties of Solutions of Partial Differential Equations and Their Applications

Research Project

Project/Area Number 63540134
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field 解析学
Research InstitutionUniversity of Osaka Prefecture

Principal Investigator

OKANO Hatsuo  Professor, 総合科学部, 教授 (40079033)

Co-Investigator(Kenkyū-buntansha) SATO Masako  Professor, 総合科学部, 教授 (50081419)
ISHII Noburo  Associate Professor, 総合科学部, 助教授 (30079024)
KONNO Yasuko  Associate Professor, 総合科学部, 助教授 (70028231)
TANIGUCHI Kazuo  Lecturer, 総合科学部, 講師 (80079037)
SHINKAI Kenzo  Professor, 総合科学部, 教授 (50079034)
Project Period (FY) 1988 – 1989
Keywordshyperbolic equation / Fourier integral operator / propagation of singularity / Cauchy problem / cohomology / unitary representation / class field / lattice path combinatorics
Research Abstract

The fundamental solution of the Cauchy problem for a hyperbolic operator is given in the form of Fourier integral operator. As shown below, when the problem is not C" well-posed, the symbol of the fundamental solution has exponential growth, that is, it is estimated not only from above but also from below by (1) C exp[cxi^<1/k>], c > 0, The constant kappa in (1) corresponds to the constant in the necessary and sufficient condition for the well-posedness in Gevrey classes. In order to study this phenomena we define UWF^<{mu}>(u)(ultra wave front sets) for u that belongs to the space of ultradistributions S{k}' by (chi_0,xi_0) <not a member of> UWF^<{mu}>(u) <tautomer> *_<epsilon> > O*C ; |X^u(xi)| <less than or equal> exp[epsilon < xi >^<1/mu>], where X * S{k}*C^*_ and xi belongs to a conic neighborhood of xi_0. Then by using UWP^<{mu}>(u) we can state the propagation of very high singularities for the solution of not C^* well-posed Cauchy problem. We also construct the fundamental solutions of the Cauchy problem for degenerate hyperbolic operators (2) L_1 = THETA^2_ - t^2_ - at^kTHETA^x with 0 < k < j - 1 and (3) L_2 = THETA^2_ - x^<2j>THETA^2_ - aTHETA^x with an even integer j and we investigated other related topics.

  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] 新開謙三: "Stokes multipliers and a weakly hyperbolic operator." 発表予定.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 谷口和夫: "A fundamental solution for a degenerate hyperbolic operator of second order and Fourier integral operators of complex phase." 発表予定.

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 石井伸郎: "Ring class fields modulo 8 of Q(√<-m>) and the quartic character of units of Q(√<m>) for m≡1 mod 8." Osaka J.Math.26. 625-646 (1989)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 佐藤優子: "Generating functions for the number of lattice paths between two parallel lines with a rational incline." Math.Japonica. 34. 123-137 (1989)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 今野泰子: "Cohomology of discrete subgroups of S_p(p,q)." Osaka J.Math.25. 299-318 (1988)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] 三谷佐孝: "On the compactness of extensions." Q and A in General Topology. 6. 103-106 (1988)

    • Description
      「研究成果報告書概要(和文)」より
  • [Publications] Kenzo. SHINKAI: "Stokes multipliers and a weakly hyperbolic operator."

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Kazuo. TANIGUCHI: "A fundamental solution for a degenerate hyperbolic operator of second order and Fourier integral operators of complex phase"

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Noburo, ISHII: "Ring class fields modulo 8 of Q(ROO<-m>) and the quartic character of units of Q(ROO<m>) for m 1 mod 8" Osaka J.Math., 26, 625-646, 1989.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Masako, SATO: "Generating functions for the number of lattice paths between two parallel lines with a rational incline." Math. Japonica, 34, 123-137, 1989.

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Yasuko, KONNO: "Cohomology of discrete subgroups of S_p(p,q)." Osaka J.Math., 25, 299-318(1988).

    • Description
      「研究成果報告書概要(欧文)」より
  • [Publications] Suketake, MITANI: "On the compactness of extensions." Q and A in General Topology, 6 103-106(1988).

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 1993-03-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi