2018 Fiscal Year Annual Research Report
葉緑体で発生する活性酸素シグナルの調節機構
Publicly Offered Research
Project Area | Oxygen biology: a new criterion for integrated understanding of life |
Project/Area Number |
17H05526
|
Research Institution | Nagoya University |
Principal Investigator |
吉岡 博文 名古屋大学, 生命農学研究科, 准教授 (30240245)
|
Project Period (FY) |
2017-04-01 – 2019-03-31
|
Keywords | ROSセンサー / 植物免疫 / 葉緑体 |
Outline of Annual Research Achievements |
植物の免疫応答では、葉緑体における活性酸素種 (ROS) の生成が誘導されることが知られている。光化学系II (PSII) では一重項酸素が、PSIではO2-が生成される。レトログレードシグナルとしてO2-から派生したH2O2が葉緑体から核へ直接送り込まれる可能性が示されている。葉緑体のH2O2は、葉緑体または核でROSセンサー分子に受容されると予想される。本研究では、葉緑体のROSを介したシグナル伝達機構の解明を目指し、免疫応答、PTI (pattern-triggered immunity) および細胞死を伴うETI (effector-triggered immunity) におけるROSセンサー分子の役割を調べた。 ROSを介した主なシグナル伝達は、センサー分子のシステイン残基がH2O2と反応してスルフェン酸を形成し、スルフェン酸が修飾を受けることでシグナルが誘導される。スルフェン酸と反応してシグナル伝達を阻害するYAP1を葉緑体に発現させたところ、INF1誘導による細胞死が抑制された。ベンサミアナタバコにPTIとETIをそれぞれ誘導し、クロロフィル蛍光とガス交換速度の測定により光合成活性測定を行った。ETIを誘導するRpi-blb2/AVRblb2は、PSI に連動するCO2固定活性を顕著に抑制した。一方で、PTIを誘導するflg22はCO2固定に影響を与えなかった。さらに、PTIとETIは共にPSII活性に影響を与えなかった。以上の結果から、ETIにおけるCO2固定阻害に起因した過剰なNADPHが、葉緑体でのROS生成に寄与しているものと考えられた。 以上より、葉緑体のROSシグナルは、細胞死を誘導する因子に関連した複雑なネットワークを形成しているものと思われた。
|
Research Progress Status |
平成30年度が最終年度であるため、記入しない。
|
Strategy for Future Research Activity |
平成30年度が最終年度であるため、記入しない。
|
-
[Journal Article] RNAi of the sesquiterpene cyclase gene for phytoalexin production impairs pre‐ and post‐invasive resistance to potato blight pathogens2019
Author(s)
Yoshioka, M., Adachi, I., Sato, Y., Doke, N., Kondo, T. and Yoshioka, H.
-
Journal Title
Molecular Plant Pathology
Volume: 印刷中
Pages: 印刷中
DOI
Peer Reviewed / Open Access
-
-
-
-
[Presentation] WRKYs phosphorylated by MAPK regulate chloroplast-mediated ROS burst in plant immunity2018
Author(s)
Yoshioka, H., Adachi, H., Ishihama, N., Belhaj, K., Takano, Y., Kamoun, S., Sato, M. and Yoshioka, M.
Organizer
International Congress of Plant Pathology (ICPP) 2018
Int'l Joint Research
-
-