2010 Fiscal Year Annual Research Report
高次元観測データからの大規模対象状態に関する未来予測と管理戦略策定手法の開発
Publicly Offered Research
Project Area | Cyber Infrastructure for the Information-explosion Era |
Project/Area Number |
21013032
|
Research Institution | Osaka University |
Principal Investigator |
鷲尾 隆 大阪大学, 産業科学研究所, 教授 (00192815)
|
Keywords | データマイニング / 大規模次元データ / 時系列データ / ダイナミクス / モデリング |
Research Abstract |
本最終年度は,集約された巨視ダイナミクスと粒子シミュレーション最適化に基づいて、(A)操作可能なパラメータによる目標状態へ対象系を導く管理戦略を導出する方法の検討・確立と、(B)前年度最後の予備的実適用を通じて明らかになった当初技術(1)各粒子周りの局所ダイナミクスを逐次導出して次元の呪いの問題を回避しつつ効率的かつ適切に修正すべき状態変数組を探索する下法、(2)各粒子の選択状態変数組について局所ダイナミクスから逐次状態を修正予測する方法、(3)多数粒子の予測状態軌跡を巨視的に集約する方法の問題点克服に取り組んだ。まず、(B)については、粒子群から確率密度推定する際の近似を修正することで、計算量を抑えたまま高い推定精度を確保する方法を確立し、(1)(2)(3)何れの問題点をも解決することに成功した。(A)については、本改良・拡張した手法をRFIDタグチップによる大規模スーパーマーケットの商業物流・人間移動ユビキタス追跡システムデータに適川し、大規模変数次元時系列観測データから得られるダイナミクスモデルに関して妥当な未来予測と有効な管理戦略が策定できるかを例題を通じて評価した。数値実験を繰り返し、管理戦略策定方法の構築と改良を進め、実問題に適川可能な方法論を確立し、当該実問題で有効性を実証した。特にこれを通じ、従来手法で直接推定が不可能であった大規模スーパー店舗における顧客の各売場毎の滞在時間と商品購入確率を高精度推定することを可能にする手法を得た。
|