• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2014 Fiscal Year Annual Research Report

離散凸解析に基づく劣モジュラ最適化問題の計算限界の解明

Publicly Offered Research

Project AreaA multifaceted approach toward understanding the limitations of computation
Project/Area Number 25106503
Research InstitutionTohoku University

Principal Investigator

塩浦 昭義  東北大学, 情報科学研究科, 准教授 (10296882)

Project Period (FY) 2013-04-01 – 2015-03-31
Keywords劣モジュラ関数 / 離散凸解析 / 組合せ最適化 / アルゴリズム / 離散凸関数
Outline of Annual Research Achievements

本研究では,劣モジュラ関数を様々な制約条件の下で最小化または最大化するという離散最適化問題(劣モジュラ最適化問題)を扱った.劣モジュラ性は様々な状況で自然に現れる概念であり,数多くの応用をもつことから,近年アルゴリズム開発の研究が盛んに行われている.しかし,その問題の数学的構造や計算複雑度については十分に解明されていない. 本研究の目的は,劣モジュラ最適化問題を離散凸解析の視点から調査することにより,劣モジュラ最適化問題の計算限界を明らかにすることである.研究代表者は科研費による援助を受けながら,離散凸解析の研究に10年以上携わってきた.その成果を踏まえ,この問題の構造解析および計算複雑度の解明に取り組んだ.
本年度は,昨年度に引き続き,L凸関数の最小化問題に対する,最急降下アルゴリズムの解析を行った.昨年度は整数格子点集合上で定義されたL凸関数の場合を主に扱ったが,本年度は実数空間上で定義された多面体的L凸関数の場合へ一般化して解析を行った.最小費用流問題に対し Hassin (1983) が提案した双対アルゴリズムでは,双対変数を最急上昇方向へ繰り返し更新する.離散凸解析においては,最小費用流問題の双対問題は,多面体的L凸関数の最小化として定式化できることが知られており,Hassinのアルゴリズムは多面体的L凸関数に対する最急降下アルゴリズムと見なすことができる.本研究では,多面体的L凸関数に対する最急降下アルゴリズムのもつ様々な単調性を明らかにした.まず,最急降下アルゴリズムがHassinのアルゴリズムと同様の単調性を持つことを示した.また,任意の初期点から出発したときに,最急降下アルゴリズムが初期点から「最も近い」最適解を求めると共に,アルゴリズムで生成された解の軌跡が初期点から最適解への「最短路」であることを証明した.

Research Progress Status

26年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

26年度が最終年度であるため、記入しない。

  • Research Products

    (5 results)

All 2015 2014

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (3 results) (of which Invited: 2 results)

  • [Journal Article] Polynomial-Time Approximation Schemes for Maximizing Gross Substitutes Utility under Budget Constraints2015

    • Author(s)
      Akiyoshi Shioura
    • Journal Title

      Mathematics of Operations Research

      Volume: 40 Pages: 171-191

    • DOI

      10.1287/moor.2014.0668

    • Peer Reviewed
  • [Journal Article] Exact Bounds for Steepest Descent Algorithms of L-convex Function Minimization2014

    • Author(s)
      Kazuo Murota and Akiyoshi Shioura
    • Journal Title

      Operations Research Letters

      Volume: 42 Pages: 361-366

    • DOI

      10.1016/j.orl.2014.06.005

    • Peer Reviewed
  • [Presentation] Minimization of L-convex Function and Its Application2014

    • Author(s)
      Akiyoshi Shioura
    • Organizer
      2014 Bilateral Workshop between Tohoku University and National Tsing Hua University
    • Place of Presentation
      ホテル松島大観荘(宮城県松島町)
    • Year and Date
      2014-11-21
    • Invited
  • [Presentation] Computing a Walrasian equilibrium in iterative auctions with multiple differentiated items2014

    • Author(s)
      Akiyoshi Shioura
    • Organizer
      Japanese-Swiss Workshop on Combinatorics and Computational Geometry
    • Place of Presentation
      東京大学(東京都文京区)
    • Year and Date
      2014-06-05
    • Invited
  • [Presentation] Time Complexity Analysis of Iterative Auctions with Multiple Differentiated Items2014

    • Author(s)
      塩浦昭義
    • Organizer
      電子情報通信学会コンピュテーション研究会
    • Place of Presentation
      東北大学(宮城県仙台市)
    • Year and Date
      2014-04-24

URL: 

Published: 2016-06-01  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi