Skip to main content
Log in

Unloading-Induced Degradation of the Anisotropic Arrangement of Collagen/Apatite in Rat Femurs

Calcified Tissue International Aims and scope Submit manuscript

Abstract

The specific orientation of collagen and biological apatite (BAp) is an anisotropic feature of bone micro-organization; it is an important determinant of bone mechanical function and performance under anisotropic stress. However, it is poorly understood how this microstructure orientation is altered when the mechanical environment changes. We hypothesized that the preferential orientation of collagen/BAp would change in response to changes in mechanical conditions, similar to the manner in which bone mass and bone shape change. In the present study, we investigated the effect of unloading (removal of anisotropic stress) on the preferential orientation of collagen/BAp using a rat sciatic neurectomy model. Bone tissue that formed under unloaded conditions showed a more disordered collagen/BAp orientation than bone tissue that formed under physiological conditions. Coincidentally, osteocytes in unloaded bone displayed spherical morphology and random alignment. To the best of our knowledge, this study is the first to demonstrate the degradation of preferential collagen/BAp orientation in response to unloading conditions. In summary, we identified alterations in bone material anisotropy as an important aspect of the bone’s response to unloading, which had previously been examined with regard to bone loss only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Landis WJ (1995) The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone 16:533–544

    Article  CAS  PubMed  Google Scholar 

  2. Ishimoto T, Nakano T, Umakoshi Y, Yamamoto M, Tabata Y (2013) Degree of biological apatite c-axis orientation rather than bone mineral density controls mechanical function in bone regenerated using recombinant bone morphogenetic protein-2. J Bone Miner Res 28:1170–1179

    Article  CAS  PubMed  Google Scholar 

  3. Li S, Demirci E, Silberschmid VV (2013) Variability and anisotropy of mechanical behavior of cortical bone in tension and compression. J Mech Behav Biomed Mater 21:109–120

    Article  PubMed  Google Scholar 

  4. Sample SJ, Collins RJ, Wilson AP, Racette MA, Behan M, Markel MD, Kalscheur VL, Hao Z, Muir P (2010) Systemic effects of ulna loading in male rats during functional adaptation. J Bone Miner Res 25:2016–2028

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mosley JR, March BM, Lynch J, Lanyon LE (1997) Strain magnitude related changes in whole bone architecture in growing rats. Bone 20:191–198

    Article  CAS  PubMed  Google Scholar 

  6. Sugiyama T, Meakin LB, Browne WJ, Galea GL, Price JS, Lanyon LE (2012) Bones’ adaptive response to mechanical loading is essentially linear between the low strains associated with disuse and the high strains associated with the lamellar/woven bone transition. J Bone Miner Res 27:1784–1793

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shimomura A, Matsui I, Hamano T, Ishimoto T, Takehana K, Inoue K, Kusunoki Y, Mori D, Nakano C, Obi Y, Fujii N, Takabatake Y, Nakano T, Tsubakihara Y, Isaka Y, Rakugi H (2014) Dietary l-lysine prevents arterial calcification in adenine-induced uremic rats. J Am Soc Nephrol 25:1954–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Noyama Y, Nakano T, Ishimoto T, Sakai T, Yoshikawa H (2013) Design and optimization of the oriented groove on the hip implant surface to promote bone microstructure integrity. Bone 52:659–667

    Article  CAS  PubMed  Google Scholar 

  9. Nakano T, Kaibara K, Tabata Y, Nagata N, Enomoto S, Marukawa E, Umakoshi Y (2002) Unique alignment and texture of biological apatite crystallites in typical calcified tissues analyzed by microbeam X-ray diffractometer system. Bone 31:479–487

    Article  CAS  PubMed  Google Scholar 

  10. Sasaki N, Sudoh Y (1997) X-ray pole figure analysis of apatite crystals and collagen molecules in bone. Calcif Tissue Int 60:361–367

    Article  CAS  PubMed  Google Scholar 

  11. Nakano T, Kaibara K, Ishimoto T, Tabata Y, Umakoshi Y (2012) Biological apatite (BAp) crystallographic orientation and texture as a new index for assessing the microstructure and function of bone regenerated by tissue engineering. Bone 51:741–747

    Article  PubMed  Google Scholar 

  12. Ciani C, Doty SB, Fritton SP (2009) An effective histological staining process to visualize bone interstitial fluid space using confocal microscopy. Bone 44:1015–1017

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kamioka H, Honjo T, Takano-Yamamoto T (2001) A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy. Bone 28:145–149

    Article  CAS  PubMed  Google Scholar 

  14. Sasaki K, Nakano T, Ferrara JD, Lee JW, Sasaki T (2008) New technique for evaluation of preferential alignment of biological apatite (BAp) crystallites in bone using transmission X-ray diffractometry. Mater Trans 49:2129–2135

    Article  CAS  Google Scholar 

  15. Basso N, Jia Y, Bellows CG, Heersche JNM (2005) The effect of reloading on bone volume, osteoblast number, and osteoprogenitor characteristics: studies in hind limb unloaded rats. Bone 37:370–378

    Article  PubMed  Google Scholar 

  16. Matsumoto T, Nakayama K, Kodama Y, Fuse H, Nakamura T, Fukumoto S (1998) Effect of mechanical unloading and reloading on periosteal bone formation and gene expression in tail-suspended rapidly growing rats. Bone 22:89S–93S

    Article  CAS  PubMed  Google Scholar 

  17. Zeng QQ, Jee WSS, Bigornia AE, King JG Jr, D’Souza SM, Li XJ, Ma YF, Wechter WJ (1996) Time responses of cancellous and cortical bones to sciaticneurectomy in growing female rats. Bone 19:13–21

    Article  CAS  PubMed  Google Scholar 

  18. Maïmoun L, Brennan-Speranza TC, Rizzoli R, Ammann P (2012) Effects of ovariectomy on the changes in microarchitecture and material level properties in response to hind leg disuse in female rats. Bone 51:586–591

    Article  PubMed  Google Scholar 

  19. Carpenter RD, LeBlanc AD, Evans H, Sibonga JD, Lang TF (2010) Long-term changes in the density and structure of the human hip and spine after long-duration spaceflight. Acta Astronaut 67:71–81

    Article  Google Scholar 

  20. Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A (2004) Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res 19:1006–1012

    Article  PubMed  Google Scholar 

  21. Yonezu H, Ikata T, Takata S, Shibata A (1999) Effect of sciatic neurectomy on the femur in growing rats: application of peripheral quantitative computed tomography and Fourier transform infrared spectroscopy. J Bone Miner Metab 17:259–265

    Article  CAS  PubMed  Google Scholar 

  22. Iwamoto J, Takeda T, Ichimura S, Sato Y, Yeh JK (2003) Comparative effects of orchidectomy and sciatic neurectomy on cortical and cancellous bone in young growing rats. J Bone Miner Metab 21:211–216

    PubMed  Google Scholar 

  23. Yonezu H, Takata S, Shibata A (2004) Effects of unilateral sciatic neurectomy on growing rat femur as assessed by peripheral quantitative computed tomography, Fourier transform infrared spectroscopy and bending test. J Med Invest 51:96–102

    Article  PubMed  Google Scholar 

  24. Ishimoto T, Nakano T, Yamamoto M, Tabata Y (2011) Biomechanical evaluation of regenerated long bone by nanoindentation. J Mater Sci Mater Med 22:969–976

    Article  CAS  PubMed  Google Scholar 

  25. Garnero P (2015) The role of collagen organization on the properties of bone. Calcif Tissue Int 97:229–240

    Article  CAS  PubMed  Google Scholar 

  26. Burger EH, Klein-Nulend J (1999) Mechanotransduction in bone—role of the lacuno-canalicular network. FASEB J 13(Suppl):S101–S112

    CAS  PubMed  Google Scholar 

  27. Klein-Nulend J, van der Plas A, Semeins CM, Ajubi NE, Frangos JA, Nijweide PJ, Burger EH (1995) Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J 9:441–445

    CAS  PubMed  Google Scholar 

  28. Shah FA, Zanghellini E, Matic A, Thomsen P, Palmquist A (2016) The orientation of nanoscale apatite platelets in relation to osteoblastic–osteocyte lacunae on trabecular bone surface. Calcif Tissue Int 98:193–205

    Article  CAS  PubMed  Google Scholar 

  29. Kerschnitzki M, Kollmannsberger P, Burghammer M, Duda GN, Weinkamer R, Wagermaier W, Fratzl P (2013) Architecture of the osteocyte network correlates with bone material quality. J Bone Miner Res 28:1837–1845

    Article  CAS  PubMed  Google Scholar 

  30. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell-surface and through the cytoskeleton. Science 260:1124–1127

    Article  CAS  PubMed  Google Scholar 

  31. Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA 94:849–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vatsa A, Breuls RG, Semeins CM, Salmon PL, Smit TH, Klein-Nulend J (2008) Osteocyte morphology in fibula and calvaria—is there a role for mechanosensing? Bone 43:452–458

    Article  PubMed  Google Scholar 

  33. Himeno-Ando A, Izumi Y, Yamaguchi A, Iimura T (2012) Structural differences in the osteocyte network between the calvaria and long bone revealed by three-dimensional fluorescence morphometry, possibly reflecting distinct mechano-adaptations and sensitivities. Biochem Biophys Res Commun 417:765–770

    Article  CAS  PubMed  Google Scholar 

  34. Sugawara Y, Kamioka H, Ishihara Y, Fujisawa N, Kawanabe N, Yamashiro T (2013) The early mouse 3D osteocyte network in the presence and absence of mechanical loading. Bone 52:189–196

    Article  PubMed  Google Scholar 

  35. Klein-Nulend J, Bakker AD, Bacabac RG, Vasta A, Weinbaum S (2013) Mechanosensation and transduction in osteocytes. Bone 54:182–190

    Article  CAS  PubMed  Google Scholar 

  36. Frost HM (2003) Bone’s mechanostat: a 2003 update. Anat Rec A 275:1081–1101

    Article  Google Scholar 

  37. Turner CH, Forwood MR, Rho JY, Yoshikawa T (1994) Mechanical loading thresholds for lamellar and woven bone formation. J Bone Miner Res 9:87–97

    Article  CAS  PubMed  Google Scholar 

  38. Rubin CT, Lanyon LE (1985) Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 37:411–417

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Grants-in-Aid for Scientific Research (JP25220912) from the Japan Society for the Promotion of Science (JSPS). The authors thank Chie Fukuda and Shin-ichi Mochizuki of Daiichi Sankyo Co., Ltd. for providing bone specimens.

Author Contributions

TN designed the study; JW, TI, and TN conducted the study; JW and TI analyzed the data; TI and TN interpreted the data; JW and TI drafted the manuscript; and all authors revised the manuscript content and approved the final version of the manuscript. TN takes responsibility for the integrity of the data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayoshi Nakano.

Ethics declarations

Conflict of interest

Jun Wang, Takuya Ishimoto, and Takayoshi Nakano declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

The study was conducted in accordance with the guidelines of the Institutional Animal Care and Use Committee of Daiichi Sankyo Co., Ltd. and the Animal Experiment Committee of the Osaka University Graduate School of Engineering where the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Ishimoto, T. & Nakano, T. Unloading-Induced Degradation of the Anisotropic Arrangement of Collagen/Apatite in Rat Femurs. Calcif Tissue Int 100, 87–94 (2017). https://doi.org/10.1007/s00223-016-0200-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-016-0200-0

Keywords

Navigation