Skip to main content

Advertisement

Log in

Physiological and genetic characterization of rice nitrogen fixer PGPR isolated from rhizosphere soils of different crops

Plant and Soil Aims and scope Submit manuscript

An Erratum to this article was published on 08 March 2016

Abstract

Aims

We aimed to identify plant growth-promoting rhizobacteria that could be used to develop a biofertilizer for rice.

Methods

To obtain plant growth-promoting rhizobacteria, rhizosphere soils from different crops (rice, wheat, oats, crabgrass, maize, ryegrass, and sweet potato) were inoculated to rice plants. In total, 166 different bacteria were isolated and their plant growth-promoting traits were evaluated in terms of colony morphology, indole-3-acetic acid production, acetylene reduction activity, and phosphate solubilization activity. Moreover, genetic analysis was carried out to evaluate their phylogenetic relationships based on 16S rRNA sequence data.

Results

Strains of Bacillus altitudinis, Pseudomonas monteilii, and Pseudomonas mandelii formed associations with rice plants and fixed nitrogen. A strain of Rhizobium daejeonense showed nitrogen fixation activity in an in vitro assay and in vivo. Strains of B. altitudinis and R. daejeonense derived from rice rhizosphere soil, strains of P. monteilii and Enterobacter cloacae derived from wheat rhizosphere soil, and a strain of Bacillus pumilus derived from maize rhizosphere soil significantly promoted rice plant growth.

Conclusions

These methods are effective to identify candidate species that could be developed as biofertilizers for target crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Abbreviations

PGPR:

Plant growth promoting rhizobacteria

IAA:

Indole-3-acetic acid

ARA:

Acetylene reduction assay

DNA:

Deoxyribonucleic acid

CTAB:

Hexadecyltrimethylammonium bromide

PCR:

Polymerase chain reaction

DDBJ:

DNA data bank Japan

BLAST:

Basic local alignment search tool

JAEA:

Japan Atomic Energy Agency

CRD:

Randomized block design

References

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  PubMed  Google Scholar 

  • Alazard D (1990) Nitrogen fixation in pure culture by rhizobia isolated from stem nodules of tropical Aeschynomene species. FEMS Microbiol 68:177–182

    Article  CAS  Google Scholar 

  • Ambrosini A, Beneduzi A, Stefanski T, Pinheiro FG, Vargas LK, Passaglia LM (2012) Screening of plant growth promoting Rhizobacteria isolated from sunflower (Helianthus annuus L.). Plant Soil 356:245–264. doi:10.1007/s11104-011-1079-1

    Article  CAS  Google Scholar 

  • Beneduzi A, Peres D, Costa PB, Zanettini MH, Passaglia LM (2008a) Genetic and phenotypic diversity of plant-growth-promoting bacilli isolated from wheat fields in southern Brazil. Res Microbiol 159:244–250. doi:10.1016/j.resmic.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  • Beneduzi A, Peres D, Vargas LK, Bodanese-Zanettini MH, Passaglia LM (2008b) Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Appl Soil Ecol 39:311–320. doi:10.1016/j.apsoil.2008.01.006

    Article  Google Scholar 

  • Bent E, Tuzun S, Chanway PC, Eneback S (2001) Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can J Microbiol 47:793–800

    Article  CAS  PubMed  Google Scholar 

  • Boddey RM, Dobereiner J (1988) Nitrogen fixation associated with grasses and cereals: recent results and perspectives for future research. Plant Soil 108:53–65

    Article  Google Scholar 

  • Campbell CD, Grayston SJ, Hirst DJ (1997) Use of rhizosphere carbon sources in sole carbon source tests to discriminate soil microbial communities. J Microbiol Methods 30:33–41

    Article  Google Scholar 

  • Chabot R, Anton H, Cescas MC (1996) Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium Leguminosarum biovar phaseoli. Plant Soil 184:311–321

    Article  CAS  Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants – with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury SP, Schmid M, Hartmann A, Tripathi AK (2007) Identification of diazotrophs in the culturable bacterial community associated with roots of Lasiurus sindicus, a perennial grass of Thar Desert, India. Microb Ecol 54:82–90. doi:10.1016/j.micres.2008.08.007

    Article  PubMed  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka E (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959. doi:10.1128/AEM.71.9.4951-4959.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Döbereiner J, Marriel IE, Nery M (1976) Ecological distribution of Spirillum lipoferum Beijerinck. Can J Microbiol 22:1464–1473

    Article  PubMed  Google Scholar 

  • Duan J, Muller KM, Charles TC, Vesely S, Glick BR (2009) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from Southern Saskatchewan. Microb Ecol 57:423–436. doi:10.1007/s00248-008-9407-6

    Article  CAS  PubMed  Google Scholar 

  • Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the Salkowski Reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412. doi:10.1016/j.soilbio.2004.08.030

    Article  CAS  Google Scholar 

  • Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    Article  CAS  Google Scholar 

  • Hatayama K, Kawai S, Shoun H, Ueda Y, Nakamura K (2005) Pseudomonas azotifigens sp. nov., a novel nitrogen-fixing bacterium isolated from a compost pile. Int J Syst Evol Microbiol 55:1539–1544. doi:10.1099/ijs.0.63586-0

    Article  CAS  PubMed  Google Scholar 

  • Hinsinger P, Bengough AG, Vettrlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152. doi:10.1007/s11104-008-9885-9

    Article  CAS  Google Scholar 

  • Hurek T, Reinhold-Hurek B (2003) Azoarcus spp. strain BH72 as a model for nitrogen fixing grass endophytes. J Biotechnol 106:169–178. doi:10.1016/j.jbiotec.2003.07.010

    Article  CAS  PubMed  Google Scholar 

  • Isawa T, Yasuda M, Awazaki H, Minamisawa K, Shinozaki S, Hakashita H (2010) Azospirillum sp. Strain B510 enhances rice growth and yield. Microbes Environ 25:58–61. doi:10.1264/jsme2.ME09174

    Article  PubMed  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth promoting rhizobacteria on radishes. Fourth International Conference on Plant Pathogenic Bacteria, Angers, France 2:879–882

  • Kuske CR, Ticknor LO, Miller ME, Dunbar JM, Davis JA, Barns SM, Belnap J (2002) Comparison of soil bacterial communities in rhizospheres of three plant species and the interspaces in an arid grassland. Appl Environ Microbiol 68:1854–1863. doi:10.1128/AEM.68.4.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lupwayi NZ, Rice WA, Clayton GW (1998) Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol Biochem 30:1733–1741

    Article  CAS  Google Scholar 

  • Mcinroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342

    Article  CAS  Google Scholar 

  • Mehnaz S, Mirza MS, Haurat J, Bally R, Normand P, Bano A, Malik KA (2001) Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Can J Microbiol 47:110–117. doi:10.1139/cjm-47-2-110

    Article  CAS  PubMed  Google Scholar 

  • Meunchang S, Panichsakpatana S, Yokoyama T (2004) Phylogenetic and physiological characterization of indigenous Azospirillum isolates in Thailand. Soil Sci Plant Nutr 50:413–421

    Article  CAS  Google Scholar 

  • Mirza MS, Ahmad W, Latif F, Haurat J, Bally R, Normand KP, Malik A (2001) Isolation, partial characterization, and the effect of plant growth-promoting bacteria (PGPB) on micro-propagated sugarcane in vitro. Plant Soil 237:47–54

    Article  CAS  Google Scholar 

  • Morales-Garcia YE, Juarez-Hernandez D, Mascarua-Esparzam MA, Bustillos-Cristales MR, Fuentes-Ramirez LE, Martinez-Contreras RD, Munoz-Rojas J (2011) Growth response of maize plantlets inoculated with Enterobacter spp., as a model for alternative agriculture. Rev Argent Microbiol 43:287–293

    PubMed  Google Scholar 

  • Naik PR, Raman G, Narayanan KB, Sakthivel N (2008) Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiol 8:230. doi:10.1186/1471-2180-8-230

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohyama T, Yokoyama T, Narumi I et al (2006) Biofertilizer manual. Japan Atomic Industrial Forum (JAIF), Tokyo, Japan

  • Park M, Kim C, Yang J, Lee H, Shin W, Kim S, Sa T (2005) Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res 160:127–133. doi:10.1016/j.micres.2004.10.003

    Article  CAS  PubMed  Google Scholar 

  • Pikovskaia RI (1948) Metabolisation of phosphorus in soil in connection with vital activity of some microbial species. Microbiologiya 17:362–370

    Google Scholar 

  • Prescott L, Harely J, Klein DA (1990) Microbiology. McGraw-Hill, Boston, USA

    Google Scholar 

  • Quan ZH, Bae HS, Baek JH, Chen WF, Im WT, Lee ST (2005) Rhizobium daejeonense sp. nov. isolated from a cyanide treatment bioreactor. Int J Syst Evol Microbiol 55:2543–2549. doi:10.1099/ijs.0.63667-0

    Article  CAS  PubMed  Google Scholar 

  • Reyes I, Bernier L, Antoun H (2002) Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosum. Microb Ecol 44:39–48. doi:10.1007/ s00248-002-1001-8

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro CM, Cardoso EJ (2012) Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil Pine (Araucaria angustifolia). Microbiol Res 167:69–78. doi:10.1016/j.micres.2011.03.003

    Article  CAS  PubMed  Google Scholar 

  • Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Perez-Garcia A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microbe Interact 20:430–440. doi:10.1094/MPMI-20-4-0430

    Article  CAS  PubMed  Google Scholar 

  • Sashidhar B, Podile AR (2010) Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. J Appl Microbiol 109:1–12. doi:10.1111/j.1365-2672.2009.04654.x

    CAS  PubMed  Google Scholar 

  • Schmidt CS, Alavi M, Cardinale M, Muller H, Berg G (2012) Stenotrophomonas rhizophila DSM14405T promotes plant growth probably by altering fungal communities in the rhizosphere. Biol Fertil Soils 48:947–960

    Article  Google Scholar 

  • Söderberg KH, Olsson PA, Bååth E (2002) Structure and activity of the bacterial community in the rhizosphere of different plant species and the effect of Arbuscular mycorrhizal colonisation. FEMS Microbiol Ecol 40:223–231

    Article  PubMed  Google Scholar 

  • Tripathi AK, Verma SC, Ron EZ (2002) Molecular characterization of a salt-tolerant bacterial community in the rice rhizosphere. Res Microbiol 153:579–584

    Article  CAS  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Watanabe I, Furusaka C (1980) Microbial ecology of flooded rice soils. Adv Microb Ecol 4:125–168

    Article  CAS  Google Scholar 

  • Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl Environ Microbiol 67:5849–5854. doi:10.1128/AEM.67.12.5849-5854.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie GH, Cai MY, Tao GC, Steinberger Y (2003) Cultivable heterotrophic N2-fixing bacterial diversity in rice fields in the Yangtze River Plain. Biol Fertil Soils 37:29–38. doi:10.1007/s00374-002-0565-2

    CAS  Google Scholar 

  • Yokoyama T (2008) Flavonoid-responsive nodY-lacZ expression in three phylogenetically different Bradyrhizobium groups. Can J Microbiol 54:401–410

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama T, Ando S, Murakami T, Imai H (1996) Genetic variability of the common nod gene in soybean bradyrhizobia isolated in Thailand and Japan. Can J Microbiol 42:1209–1218. doi:10.1139/m96-156

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Ancajas RR (1971) Nitrogen fixation by bacteria in the root zone of rice. Soil Sci Soc Am Proc 35:156–158

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Special Research Fund of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan titled “Research and development of security and safe crop production to reconstruct agricultural lands in Fukushima prefecture based on novel techniques to remove radioactive compounds using advanced bio-fertilizer and plant protection strategies”. This work was also supported by a Grant-in-Aid for Scientific Research (B):24380176 from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Yokoyoma.

Additional information

Responsible Editor: Peter A.H. Bakker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habibi, S., Djedidi, S., Prongjunthuek, K. et al. Physiological and genetic characterization of rice nitrogen fixer PGPR isolated from rhizosphere soils of different crops. Plant Soil 379, 51–66 (2014). https://doi.org/10.1007/s11104-014-2035-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2035-7

Keywords

Navigation