平成27年度科学研究費補助金「新学術領域研究（研究領域提案型）」に係る事後評価報告書

「バルクナノメタル」
〜常識を覆す新しい構造材料の科学

（領域設定期間）
平成22年度〜平成26年度

平成27年6月

領域代表者　（京都大学・工学研究科・教授・辻　伸泰）
目次

1. 研究領域の目的及び概要 .. 6
2. 研究領域の設定目的の達成度 ... 8
3. 研究領域の研究推進時の問題点と当時の対応状況 12
4. 審査結果の所見及び中間評価で指摘を受けた事項への対応状況 13
5. 主な研究成果（発明及び特許を含む） ... 16
6. 研究成果の取りまとめ及び公表の状況（主な論文等一覧、ホームページ、公開発表等） 20
7. 研究組織（公募研究を含む）と各研究項目の連携状況 27
8. 研究経費の使用状況（設備の有効活用、研究費の効果的使用を含む） 29
9. 当該学問分野及び関連学問分野への貢献度 33
10. 研究計画に参画した若手研究者の成長の状況 34
11. 総括班評価者による評価 ... 36
<table>
<thead>
<tr>
<th>研究 項目</th>
<th>課題番号</th>
<th>課題名</th>
<th>研究期間</th>
<th>代表者氏名</th>
<th>所属機関・部局</th>
<th>構成員数</th>
</tr>
</thead>
<tbody>
<tr>
<td>X00</td>
<td>22102001</td>
<td>総括班:バルクナノメタル新学術領域研究の連携的な運営と統括</td>
<td>平成22年度〜平成26年度</td>
<td>辻伸泰</td>
<td>京都大学・工学研究科・教授</td>
<td>6</td>
</tr>
<tr>
<td>22102002</td>
<td>バルクナノメタルの材料設計</td>
<td>平成22年度〜平成26年度</td>
<td>辻伸泰</td>
<td>京都大学・工学研究科・教授</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>A01</td>
<td>22102003</td>
<td>第一原理計算によるバルクナノメタルの基礎物性設計</td>
<td>平成22年度〜平成26年度</td>
<td>尾方成信</td>
<td>大阪大学・基礎工学研究科・教授</td>
<td>4</td>
</tr>
<tr>
<td>22102004</td>
<td>構造精密制御したバルクナノメタルの創製</td>
<td>平成22年度〜平成26年度</td>
<td>堀田善治</td>
<td>九州大学・工学研究院・教授</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>A01</td>
<td>22102005</td>
<td>バルクナノメタル創製の計算機・物理シミュレーション</td>
<td>平成22年度〜平成26年度</td>
<td>柳本潤</td>
<td>東京大学・生産技術研究所・教授</td>
<td>4</td>
</tr>
<tr>
<td>22102006</td>
<td>バルクナノメタルにおける力学特性の解明と変形理論構築</td>
<td>平成22年度〜平成26年度</td>
<td>加藤雅治</td>
<td>東京工業大学・総合理工学研究科・教授</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>A03</td>
<td>22102007</td>
<td>内部欠陥構造発展の大規模計算によるバルクナノメタルの力学特性解析</td>
<td>平成22年度〜平成26年度</td>
<td>下川智嗣</td>
<td>金沢大学・機械工学系・准教授</td>
<td>3</td>
</tr>
</tbody>
</table>

計画研究計7件

<p>| A03 | 23102501 | ひずみ加速指数による長時間変形特性と組織の評価 | 平成23年度〜平成24年度 | 佐藤裕之 | 弘前大学・理工学研究科・准教授 | 1 |
| 公 | 23102502 | バルクナノメタルの超伝導性の開拓：極低温ナノプローブ顕微鏡と輸送測定による研究 | 平成23年度～平成24年度 | 西原照和 | 東北大学・金属材料研究所・助教 | 1 |
| 公 | 23102503 | 応力誘起相変態を利用したバルクナノメタルの創製と物性の解明 | 平成23年度～平成24年度 | 金 熙栄 | 筑波大学・数理物質科学研究科（系）・准教授 | 1 |
| 公 | 23102504 | 放射光コヒーレント回折によるバルクナノメタルのナノスケール電子密度・歪分布解析 | 平成23年度～平成24年度 | 高橋幸生 | 大阪大学・工学研究科・准教授 | 1 |
| 公 | 23102505 | 巨大ひずみ加工法による超微細粒アルミ合金の耐食性支配因子制御 | 平成23年度～平成24年度 | 中野博昭 | 九州大学・工学研究院・教授 | 1 |
| 公 | 23102506 | 粒界制御バルクナノTiNi合金の創製と粒界構造解析 | 平成23年度～平成24年度 | 西田 稔 | 九州大学・総合理工学研究院・教授 | 3 |
| 公 | 23102507 | オーステナイト系ステンレス鋼バルクナノメタルの強度と延性、耐水素疲労特性の両立 | 平成23年度～平成24年度 | 峯 洋二 | 熊本大学・自然科学研究科・准教授 | 1 |
| 公 | 23102508 | バルクナノメタルの回復・再結晶挙動とクリープ特性評価 | 平成23年度～平成24年度 | 高木秀有 | 日本大学・工学部・講師 | 1 |
| 公 | 23102509 | 電着法による強度と熱的安定性が卓越したナノ粒子分散型バルクナノ金属の創成 | 平成23年度～平成24年度 | 宮本博之 | 同志社大学・理工学部・教授 | 1 |
| 公 | 23102510 | 電気抵抗率の超精密測定による格子欠陥の静的・動的評価 | 平成23年度～平成24年度 | 上田正人 | 関西大学・化学生命工学部・准教授 | 1 |
| A01 | 23102511 | バルクナノメタルの特性の解明 | 平成 23 年度〜平成 24 年度 | 加藤寛敬 | 福井工業高等専門学校・機械工学科・教授 | 2 |
| A02 | 23102512 | 化学的相互作用を利用したバルクナノマテリアルにおける耐食性制御手法の探索 | 平成 23 年度〜平成 24 年度 | 井 誠一郎 | 物質・材料研究機構・構造材料ユニット・主任研究員 | 1 |
| A02 | 23102513 | 微細粒化加工のマルチスケール解析 | 平成 23 年度〜平成 24 年度 | 渡辺育夢 | 独立行政法人物質・材料研究機構・その他部局等・主任研究員 | 1 |
| A02 | 23102514 | 弾性異常合金のバルクナノメタル形成機構解明と理想強度までの超高強度化 | 平成 23 年度〜平成 24 年度 | 古田忠彦 | 株式会社豊田中央研究所・材料プロセス研究部・鉄鋼材料プロセス研究室・主任研究員 | 1 |
| A03 | 25102701 | トワイマン効果を用いたバルクナノメタルの残留応力・ひずみの評価とその制御 | 平成 25 年度〜平成 26 年度 | 佐藤裕之 | 弘前大学・理工学研究科・教授 | 1 |
| A01 | 25102702 | 微細結晶粒を持つバルクナノメタルの特性の解明 | 平成 25 年度〜平成 26 年度 | 西崎照和 | 九州産業大学・工学部・准教授 | 1 |
| A03 | 25102703 | 4 次元トモグラフィによるバルクナノメタル変形過程の可視化 | 平成 25 年度〜平成 26 年度 | 佐藤和久 | 東北大学・金属材料研究所・准教授 | 5 |
| A02 | 25102704 | 準安定 β チタンバルクナノメタルの組織・物性解明 | 平成 25 年度〜平成 26 年度 | 金 恭隆 | 筑波大学・数理物質科学研究科（系）・教授 | 1 |
| A03 | 25102705 | 高密度の変形双晶を含むバルクナノメタルの変形挙動のひずみ速度・温度依存性 | 平成 25 年度〜平成 26 年度 | 渡辺江尋 | 金沢大学・機械工学系・准教授 | 1 |</p>
<table>
<thead>
<tr>
<th>公募研究 計 27 件</th>
<th>A03</th>
<th>公募研究</th>
<th>25102706</th>
<th>多軸鍛造 Mg 合金バルクメタルにおける疲労力学現象の解明と最適鍛造条件の提案</th>
<th>平成 25 年度～平成 26 年度</th>
<th>植松美彦</th>
<th>岐阜大学・工学部・教授</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>公募研究</td>
<td>25102707</td>
<td>バルクナノ超弾性合金におけるマルテンサイト変態の結晶学と機能発現の起源</td>
<td>平成 25 年度～平成 26 年度</td>
<td>西田 稔</td>
<td>九州大学・総合理工学研究院・教授</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>A02</td>
<td>公募研究</td>
<td>25102708</td>
<td>バルクナノ結晶半導体の新規創製</td>
<td>平成 25 年度～平成 26 年度</td>
<td>生駒嘉史</td>
<td>九州大学・工学研究院・助教</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>A01</td>
<td>公募研究</td>
<td>25102709</td>
<td>バルクナノメタルの磁気・電気物性の新開拓と粒界制御への挑戦</td>
<td>平成 25 年度～平成 26 年度</td>
<td>美藤正樹</td>
<td>九州工業大学・工学研究科・教授</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A02</td>
<td>公募研究</td>
<td>25102710</td>
<td>電着法によるナノ粒子分散バルクナノメタルの開発と分散制御</td>
<td>平成 25 年度～平成 26 年度</td>
<td>宮本博之</td>
<td>同志社大学・理工学部・教授</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A02</td>
<td>公募研究</td>
<td>25102711</td>
<td>微細粒化プロセスの有限要素解析</td>
<td>平成 25 年度～平成 26 年度</td>
<td>渡辺育夢</td>
<td>独立行政法人 物質・材料研究機構・その他部局等・主任研究員</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A03</td>
<td>公募研究</td>
<td>25102712</td>
<td>溶質元素添加による微細結晶粒マグネシウム合金の粒界塑性形態応答</td>
<td>平成 25 年度～平成 26 年度</td>
<td>染川英俊</td>
<td>独立行政法人 物質・材料研究機構・元素戦略材料センター・主任研究員</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A02</td>
<td>公募研究</td>
<td>25102713</td>
<td>特異なバルクナノ組織を有する Fe 基合金の超高強度-高延性発現メカニズムの解明</td>
<td>平成 25 年度～平成 26 年度</td>
<td>古田忠彦</td>
<td>株式会社豊田中央研究所・材料・プロセス 1 部合金設計・プロセス研究室・主任研究員</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
1. 研究領域の目的及び概要（2ページ程度）

研究領域の研究目的及び全体構想について、応募時に記述した内容を簡潔に記述してください。どのような点が「我が国の学術水準の向上・強化につながる研究領域」であるか、研究の学術的背景（応募領域の著意に至った経緯、応募時までの研究成果を発展させる場合にはその内容等）を中心に記述してください。

本研究の目的は、「マトリクスを構成する結晶粒や相が1μm以下のサイズを有する均一なバルク状金属系材料」＝Bulk Nanostructured Metals（バルクナノメタル）を研究対象に、それらが示す常識を超えた力学特性をはじめとする新規な物性・特性を、様々な分野背景を有する研究者が独自の最先端の研究手法を駆使し、緊密な連携を図って明らかにして、サブミクロン領域に潜む新たな材料科学の学術領域を打ち立てることである。この目的を実現するために、関連する幅広い研究分野で世界的に活動する研究者を組み、また金属材料科学における実験と計算の融合を目指す。さらには、新進気鋭の若手研究者を多数参画させ、国際競争力を有する人材の育成にも力を入れる。こうした活動により、すでに国際的に高い水準に上る我が国構造用金属材料研究分野における新たな学術領域の柱を立て、今後中長期にわたって世界のトップレベルで活躍できる人材とネットワークを含む学術環境を育成・構築する。

周期律表上の元素の5分の4は金属元素であり、各々の金属元素は多種多様な物性と特性を示す。現実社会においては、その多様な個性を生かして様々な金属・合金材料が多量に用いられており、現在の高度科学技術社会は金属材料なしには成り立たない。金属材料の最大の特徴は、高い強度を有しながら、脆く壊れることはない（ねばく、延性・靭性を有している）点にあり、その多くは力学的な特性を期待して構造材料として使用されている。科学技術の発達とともに、構造用金属材料に対する要求はますます厳しくなっている。特に環境・資源・エネルギー問題の克服が求められる現在、従来のように新たな元素を加えた合金化による特性の向上といった材料開発手法では、多様化した社会の要求に応えることができない。すなわち、従来のメタリズムあるいは材料学の延長線上にある解決法ではなく、金属材料科学の不連続的、飛躍的な発展が必要である。本提案が取り扱うバルクナノメタルは、化学組成上は従来の金属と大きく変わらないにもかかわらず、金属材料科学の飛躍的な発展を可能とする画期的な新材料となりうるものである。

我々が用いる金属材料のほとんどは、異なる結晶方位を有する多数の結晶粒（grain）が集合した多結晶体（polycrystal）である。多結晶体を構成する結晶粒の大きさを細かくすれば、種々の特性が向上することが経験的に知られており、結晶粒微細化は材料組織制御において常に重要な課題であった。しかし現在に至っても、我々が用いるバルク金属材料の最小平均粒径は約10μm程度である。ところで、異なる方位を持つ隣接する結晶粒の境界（粒界：grain boundary）においては、原子の3次元的な周期配列は途切れる（図1）。しかし多結晶体が破壊せずにバルク形状を維持している以上、粒界面した原子は隣接粒側の原子とも結合を保っている。しかしその結合の様相や幾何学的配列は、粒内での整然とした周期的配列とは異なっている。また、幾何学上の必然から、結晶粒子には原子サイズ以下の自由体積も存在する。今、粒界近傍のそうした原子配列の乱れた領域の厚さを仮に1nmとすると、粒界領域の体積率を平均粒径の関数として計算することができる。それと示されたもので、図2である。この図より、粒径10μm以上の多結晶体における粒界の体積率はほぼ0％で

図1 多結晶体における粒界近傍の原子配列
図2 粒界領域の体積率と平均粒径の関係。
あることが分かる。すなわち、我々がこれまで用いてきた金属材料は、「粒界のほとんどない」多結晶体であったのである。これに対して、平均粒径が1μm以下になると粒界の体積率は急激に増加する。マトリックスを構成する結晶粒や相の大きさが1μm以下であるバルク形状の多結晶体金属を、バルクナノメタル（Bulk Nanostructured Metals）と呼ぶことになる。

粒界部の原子構造は粒内とは大きく異なるから、「粒界だらけ」のバルクナノメタルは、従来の金属とは全く異なる物性・特性を示す。金属材料の変形は、転位（dislocation）と呼ばれる格子欠陥のすべり運動により担われる。バルクナノメタルにおいては、転位の運動空間（粒内のスペース）が非常に小さくなり、個々の結晶が高密度に存在する粒界によって強く束縛され、その振る舞い（すなわち力学特性）は従来金属の常識を超えたものとなる。例えば、バルクナノメタルは従来粒径材の約4倍にも達する強度を示し、その結果、転位格子並みの強度を有するアルミニウムが実現できる。単に強くなるだけでなく、従来はトレードオフの関係と考えられていた強度と延性・韌性の両立が、バルクナノメタルにおいては可能である。

また、粒界密度が劇的に増加することによって、通常粒径材においては粒内の原子拡散によって律速されていた種々の高温現象が、室温近傍といった低温で現れるようになる。また粒界その他の高密度格子欠陥によって自由エネルギーが大きく増加し、各合金系における熱力学的な相安定性が変化して、従来金属ではあり得なかった相変態・析出・再結晶現象が生じ、新しい組織が発現する。過去10年間（応募時点）にNature誌またはScience誌に掲載された金属系材料に関する論文のほとんどがバルクナノメタルに関するものであることも、バルクナノメタルは過去の合金設計概念を覆して、単純な化学組成で優れた特性を示し、希少資源を消費せずにリサイクル性にも優れた構造材料を実現する。すなわち、バルクナノメタルは、金属材料の不連続的、飛躍的な発展を可能とし、新しい環境・エネルギー技術を支える新材料として、持続的な社会の発展に資することができる。

本研究提案は、幅広い関連分野の多様な研究者による密接な共同研究を通じて、バルクナノメタルが示す新規な物性と特性をその組織・構造との関連から明らかにしようとするものである。本領域が5年間の研究期間内に明らかにしようとする研究項目は、以下の3点である。

① バルクナノメタルの材料設計概念の確立（A01）
② 多様なプロセスによるバルクナノメタルの製造手法の確立（A02）
③ バルクナノメタルの特異な力学特性の解明と体系化（A03）

本領域の計画班研究組織A01〜A03は、上記の研究項目に対応したものである。研究にあたっては、実験的研究と理論・計算的研究を組み合わせ、両者を融合したバルクナノメタルに関する新たな金属材料学の学術領域を打ち立てるために国が、金属材料の基礎学問と工業化の両方において世界をリードする立場にあり、金属材料学は日本の高 зн格安競争力を有する数少ない分野の一つである。近年のバルクナノメタルに関する基礎研究分野でも、我が国の研究者の寄与は非常に大きく、優れた学問分野をさらに入谷搭乗されるという意味においても本領域を実施する意義は極めて高い。また近年、三次元の電子顕微鏡トモグラフィーやアトムプローブ等のナノ材料解析の発達が目覚ましく、バルクナノメタルはそうした新手法を駆使できる格好の対象である。さらに、コンピュータの活発な分野において、原子モデルに基づく大規模計算の対象領域が100nm立方の大きさに近づいており、ここでもバルクナノメタル研究との親和性が高まっている。本領域は、これらの分野をリードする優れた研究者を総合して、関連分野間の融合も目指している。なお、計画研究ではバルクナノメタルの力学特性の解明を主な目的とするが、公募研究ではバルクナノメタル新学術領域の確立は、若手人材の育成も重要な目的としており、人材ネットワークを含む卓越した学術環境を構築して、新しい人材が中長期的に活躍できる場を構築する。本提案は、バルクナノメタル新学術領域の確立は、実社会にかかわる工学分野の強化をもたらすだけでなく、周辺の基礎学問分野にも大きな影響を与え、多岐および中期にわたって我が国の学術水準の向上・強化に資するものである。
2. 研究領域の設定目的の達成度（3ページ程度）

研究期間内に何をどこまで明らかにしようとし、どの程度達成できたか、また、応募時に研究領域として設定した研究の対象に照らしての達成度合いについて、具体的に記載してください。必要に応じ、公募研究を含めた研究項目ごとの状況も記述してください。

本新学術領域研究において設定した目的の達成度は、いずれも高い水準で達成することができた。また一部においては、当初想定した以上の成果や、予期していなかった新たな学術的知見を得ることもできた。すなわち、「バルクナノメタル研究における国際的に卓越した研究成果の獲得」、「関連する研究分野間の融合」特に「実験材料科学と計算材料科学の融合」、「バルクナノメタル新学術領域の構築」、「国際競争力を有する若手人材の育成」などにおいて、異なる分野の複数の研究者が共通の課題（バルクナノメタル）を共同で行う新学術領域研究ならではの優れた成果を多数あげることができた。これらは個別の科学研究費補助金では達成できないものである。それらの詳細を、以下に具体的に述べる。

【バルクナノメタル研究における国際的に卓越した研究成果の獲得】

本領域で実施されたバルクナノメタル研究により、数多くの卓越した研究成果が獲得された。主要なものを項目ごとに整理して以下に述べる。これらはいずれも国際的にも注目される成果である。またこれらについては、「5. 其な研究成果」においても図表とともに説明している。

1) バルクナノメタル創製プロセスの高精度化と一般化

2) 新たなバルクナノメタル創製プロセスの獲得

3) 完全再結晶バルクナノメタルの観測
り、このことが室温における小さな引張延性の一つの原因であったが、上記の完全再結晶バルクナノメタルは、高い強度（大きな加工硬化能）と数十%以上の大きな引張延性を兼ね备えていた。この驚くべき発見は、バルクナノメタル研究に新たな展開をもたらしつつある。また、このような微細再結晶粒径が得られた事実は、再結晶現象に関する基礎研究の観点からも極めて興味深い。今後、完全再結晶バルクナノメタルが得られる合金系の特徴を明らかにすることで、バルクナノメタルの材料設計に重要な新しい知見が得られるものと考えられる。

(4) バルクナノメタルにおける強度・延性両立のための基礎原理の獲得: 単相バルクナノメタルは多くの場合、高い強度に反して小さな引張延性（特に均一伸び）を示す。系統的な実験研究と理論検討によって、これは塑性不安定現象の早期発現によるものであることが明らかになった（関連文献多数）。すなわち、結晶粒超微細化によって材料の降伏強度が大きく増加するが、粒内の構造が同じである限り加工硬化率は増大せず、その結果塑性不安定現象（引張変形におけるくびれ）が早期に達成されてしまうのである。こうした理解から、バルクナノメタルにおいても何かの手法でマトリクスの加工硬化率を増大してやれば、高強度と十分な延性を両立することが示唆された。物理冶金学的には、ナノ析出物など第二相の粒内微細分散、変形双晶を利用したTWIP (Twinning Induced Plasticity)効果の利用、マルテンサイト変態によるTRIP (Transformation Induced Plasticity)現象の利用などが考えられ、実際に幾つかの材料系でこれらが実証されている（[3],[7],[8]）。こうした知見は、優れた力学特性を示すバルクナノメタルの材料設計の上で大きな進歩である。

(5) バルクナノメタルの特異な力学特性と粒界の役割の解明: 通常粒径材が決して示さない特異な力学特性が、バルクナノメタルにおいて複数見出された。例えば、(a) あらゆる金属・合金で普遍的に現れる降伏点降下現象、(b) Hall-Petch 関係におけるextra hardening、(c) 活性化体積の異常な温度依存性、(d)一部のバルクナノメタルにおける室温ひずみ速度依存変形、などである（[6],[19]）。領域内での系統的な研究と討論により、個々の粒の体積が小さくなり、粒界の密度が増して「粒界だらけ」となったバルクナノメタルにおいては、転位の活動が大きく制限され、また粒界が転位の障害物としてだけでなく、発生源（source）あるいは消滅場所（sink）としても働きうることが示唆された。これらを理論的に説明する試みとして、例えば A03 カ班の理論計算と A03 オ班の実験研究の協働により、バルクナノメタルが高い破壊靭性を示す原因が解明された。すなわち、引き先端近傍に位置する粒界が、単なるき裂の抵抗としてだけでなく、転位の発生源（source）としての役割を果たすことによって破壊靭性が増加することが、原子シミュレーションと実験の双方で示された（[83],[93],[101]）。また、上記(5)で述べたバルクナノメタル粒内における転位運動の不活性化は、結晶塑性論に基づく理論計算によって確かめられた。さらにこうした発展を受けて、チタンなどの六方晶金属の局所応力によるfirst-order計算を受けて明らかにしようとする研究や、バルクナノメタルにおける転位等格子欠陥の活動を非平衡統計力学の観点から解明しようとする先駆的な研究も実施された（[24],[26]）。

(6) バルクナノメタル研究における計算科学手法の発展とその応用: 上記の加速 MD 法の他、特に MD を用いた原子レベル大規模力学計算や、結晶塑性論および連続体力学に基づく理論計算をカップリングしてバルクナノメタルに適用する試みが5年間継続してなされ、大きな進歩と足跡を残した。例えば、A03 カ班の理論計算と A03 オ班の実験研究の協働により、バルクナノメタルが高い破壊靭性を示す原因が解明された。また、TEM 内でのその場引張観察を3次元で行うことが可能な試料ホルダーが開発・導入された（[104]）。

(7) ナノ材料解析手法の発展: 本新学術領域研究では、3次元アトムプローブ、3次元トモグラフィーを含む先端透過電子顕微鏡(TEM)法などの専門家を A01 ア班を中心に配置し、それら先端ナノ解析手法によるバルクナノメタルの解析を領域内で幅広く行い、多くの成果を得た。例えば粒界と転位の関係について、粒界近傍の転位構造の3次元トモグラフィー像が獲得され、両者の相互作用が明らかになるとともに、上記(5)で述べた粒界転位発生モデルをサポートする結果ともなった。また、TEM 内でのナノスケール方位マッピング手法（ASTAR）が、わが国で初めて導入された（[12]）。さらに、第2期公募班においては、TEM 内でのその場引張観察を3次元で行うことが可能な試料ホルダーが開発・導入された（[104]）
こうしたナノ材料解析手法の発展は、本領域研究だけでなく、わが国のナノ材料科学の発展に継続的に寄与していくものである。

(8) バルクナノメタルの機能特性の発見：本新学術領域では、特に公募班において、バルクナノメタルが示す力学特性以外の機能特性に関する研究を数多く取り入れた。これらは新しい挑戦的試みであったが、様々な興味深い成果が得られた。例えば、(i)バルクナノメタルによりNbの超伝導遷移温度が上昇する([31])、(ii)Si, GaAsなどの半導体材料に高圧巨大ひずみ加工を施しナノ結晶化することによって特異な半導体特性が観察される([48],[73])、(iii)TiFeをナノ結晶化することにより活性化処理なしで水素吸脱特性を示す([45])、(iv)Al合金の耐食性がバルクナノ化により向上する([34])、などの成果が挙げられる。これらは大変興味深い成果であり、今後、バルクナノメタルの機能特性に関する研究が新たな分野として立ち上げることを予期させている。またこうした発見は、物理化学、超伝導工学、応用物理学、物理化学、量子化学などの他分野との異分野間連携を強化するきっかけともなるものである。

【関連する研究分野間の融合】
上記(1)〜(8)でも言及したように、バルクナノメタルを共通課題とした5年間の本領域研究によって、関連する研究分野間の融合が、実質を伴いながら進行し、強固になった。これもまた、本新学術領域研究の大きな成果の一つである。本新学術領域研究の主体となるのは、構造用金属材料を中心とした材料工学分野であるが、それとの連携・融合が進んだ分野として、以下を挙げることができる。

◆ 計算力学分野：古典的には機械工学に分類される材料力学分野の先進的研究者（特に理論·計算研究者）との融合は、本領域研究で達成された最も顕著な成功例である。本領域における連携研究対象は、バルクナノメタルのマクロ変形特性、粒径の効果、粒界と転位の相互作用、き裂と粒界の相互作用、粒界からの格子欠陥発生など多岐に及び、数多くの研究成果を獲得することができた。こうした成果を受けて、さらなる共同研究を進める契機となり、一部は開始している。両分野の融合は深く根付いており、これは国際的にも大きなアドバンテージとなりうる重要な成果である。

◆ 塩性加工学分野：素形材の実用利用には形を作り込むことが不可欠であり、金属材料工学と塩性加工学は元々は密接な関係性を有していた。その後各分野の専門化によって両者の関係はやや疎遠になっていたが、一方で近年の日本の社会情勢の変化（右肩上がり成長の終焉）を受けて、それぞれの分野にはこうした状況に対する危機感も生まれている。そうした中、本領域研究の実施により、両分野の連携の重要性が再認識され、重要研究者間の人的つながりも強化された。

◆ 物性物理学分野：「転位論」の黎明期、物理物理学と材料工学は密接な連携を有していた。転位論を含む格子欠陥論の成熟とともにそうした関係性は薄れていたが、バルクナノメタルという「粒界だらけの新しい材料」の出現と、本領域研究の実施により、両者の連携が始まりつつある。ここには、第一原理計算などの理論·計算科学分野の研究者も含まれる。また、(8)で示したバルクナノメタルの興味深い超伝導特性も、両者の接点となる課題である。

◆ 電磁気学分野：超伝導特性に加え、バルクナノメタルの興味深い電気・磁気特性が、公募班の研究により明らかになった。今後の連携の深化が期待される分野である。

◆ 応用物理学分野：(8)に示したように、SiやGaAsなどの半導体材料のバルクナノメタル化が公募班により試みられ、巨大ひずみ加工中の相転移や興味深い発光特性などが見出された。得られた成果はすでに複数の論文として発表されており、同分野の興味を引きつつある。

◆ 生体工学分野：チタン合金などのバルクナノメタルは、生体材料としての応用が従来より期待されている。本領域研究で関連する成果が得られ、生体工学系の雑誌に論文が発表されている([41])。物理解学分野を含め、今後の連携の発展が予想される。
【バルクナノメタル新学術領域の構築】

上述した本新学術領域研究の活動により、「バルクナノメタル」研究分野は、金属材料工学に限らない幅広い分野で認められ、近年は物性物理学や電気化学分野からも強い注目を受けるようになっている。日本金属学会では、2014年秋より、春秋の定期講演大会で「超微細粒材料（バルクナノメタル）」という、バルクナノメタルの名前を冠した常設セッションが設けられるようになった。その後に、日本機械学会、材料学会、日本鉄鋼協会、塑性加工学会などでは、毎回バルクナノメタル関連の研究発表が行われ、それぞれの観点から議論がなされている。それらの詳細は、「9. 当該学問分野及び関連学問分野への貢献度」にも詳しく記述している。すなわち、新しい学術領域を構築するという新学術領域研究本来の目的が十分に達成された。

【国際競争力を有する若手人材の育成】

本新学術領域研究の最大の成果の一つは、領域研究を通じて若手人材育成に大きく貢献できた点にある。「10. 研究計画に参画した若手研究者の成長の状況」に詳しく述べるように、総計250名を超える学生がバルクナノメタル研究によって卒業・修了し、多大な教育的効果とともに、研究室の活性化をもたらすことができた。また、博士後期課程修了者の大半がアカデミックポジションを獲得し、また本領域研究に参画した若手・中堅研究者が数多く昇任している。期間内に参画研究者が新たに就いたポジションは、教授8名、准教授17名、講師4名、助教12名、主幹研究員1名、主任研究員1名、研究員6名に達している。バルクナノメタルを中心とした構造材料研究の基盤を日本全国の主要研究室に構築することができたことに加え、我が国の材料工学分野の将来を担う人材育成に大きく寄与できた。これらは領域研究終了後も中長期的に研究分野を支える重要成果である。

以上のように、国際的な研究成果、新しい学術分野の構築、異分野間の連携、そして人材育成の全てにおいて、本新学術領域研究は当初の目的を十分に達成することができた。期待以上の研究成果や、予期せず新たな発見もなされており、今後もバルクナノメタル研究分野の発展が予測される。社会の安全を担う構造材料の重要性は増しており、本領域研究が我が国の関連学問分野の中長期的発展のための礎の一つとなることを確信している。
研究推進時に問題が生じた場合には、その問題点とそれを解決するために講じた対応策等について具体的に記述してくださ。

組織変更を行った場合は、変更による効果についても記述してください。本新学術領域研究の初年度である2011年3月11日に、東日本大震災が発生した。本領域ではその次の週に初年度の研究成果報告会を東京・品川で開催する予定であったが、首都圏にも混乱が見られ、開催予定地であった京都大学東京オフィスが入居するビルにも安全上の問題が生じたため、第1年度の研究成果報告会は中止とし、

本新学術領域研究の実施中、研究推進のための大きな問題点は生じなかったが、下記に示す点について臨機応変かつ柔軟に対応し、適切な対応ができた。

本新学術領域研究では、そもそも計画班編成の段階から、従来は超微細粒材料や巨大ひずみ加工に携わった経験のない、他分野の研究者を新たに多数取り込んだ。また、公募研究ではバルクナノメタル研究の経験は問わず、独自の研究手法や視点を有する研究者や、物理・化学をはじめとする異分野や機能材料からの新たな参画者に門戸を開いた。こうしたいわゆる新規参入研究者にとっては、限られた時間で如何に迅速にバルクナノメタル研究を立ち上げるかという点が問題であった。これに関しては、「研究組織（公募研究を含む）と各研究項目の連携状況」で詳しく述べるよう、総括班・X00の機能が大きな役割を果たした。すなわち、バルクナノメタルに関する既存情報や人的ネットワークを紹介し、計画班を中心に作製されたバルクナノメタル実験試料の提供を含む連携・共同研究をコーディネートした。また、領域内の共通試料を幾つか定め、総括班予算で外注による合金溶製を行い、希望研究者に配布した。また、領域として強く推奨し活発に行われた班内勉強会や班間の研究会、さらには種々の学協会の講演セッションを通じて、メンバー間のコミュニケーションの結果、新規参入研究者もバルクナノメタル研究を行うに際して短期間で円滑に研究に着手でき、優れた成果を輩出することができた。例えば、研究期間が2年間しかない公募研究班からもコンスタントに論文・学会発表が行われ、中には本領域を代表する成果も現れた事実は、上記の事柄を反映している。

研究期間中、以下の研究者変更が行われた。
(1) 計画班A03オにおいて、当初研究分担者であったVinogradov, Alexei大阪市立大学准教授が、母国ロシアの大きな研究プロジェクトに誘われ、Togliatti State University教授に就任するため、研究分担者を離れた。そこで2011年度からVinogradov准教授と同じ研究室の兼子佳久准教授を新たに研究分担者として追加した。これにより、バルクナノメタルの疲労特性に関する研究を問題なく遂行し大きな成果を得ることができた。またA03オ班では、2011年度から東京工業大学・桐谷保之准教授と東京工業大学・宮嶋陽司助教授を連携研究者として追加した。これにより、バルクナノメタルの力学特性に及ぼす析出物の影響や、変形中の転位密度変化等について、新たな知見を加えることができた。
(2) 計画班A03カにおいては、2013年度より、大規模分子動力学シミュレーションを専門とする研究分担者1名（原子力研究開発機構・都留智仁博士）の追加を行った。これによりA03カ班の研究機能がさらに補強され、転位帯の理論計算、粒界の転位源発生エネルギーの相互作用の素過程の定量化に加えて、拘束空間における転位の発展と粒界を介した塑性変形の伝播の複雑な格子欠陥の発展を反映したバルクナノメタルの力学特性を理論・計算面から明らかにすることがことができた。
審査結果の所見及び中間評価における指摘を受けた事項

審査結果の所見及び中間評価において指摘を受けた事項があった場合には、当該コメント及びそれに対する対応状況を記述してください。

本新学術領域では、採択審査時および中間評価時における指摘事項への対応状況を記述し、次の研究プロジェクト展開にも繋がる幅広い成果を得ることができた。また、研究の目標を再構築するきっかけとなり、設置した外部アドバイザーから有益なコメントを受けることができた。指摘事項が本領域研究の発展に大いに役立った。

<審査結果の所見における指摘を受けた事項への対応状況>
2010年7月8日付で連絡を受けた採択時の審査結果の所見は、以下の通りである。

本研究領域は、「バルクナノメタル」の材料科学について新しい学理を確立することとともに、新たな材料開発を目指した重要な研究領域である。ナノスケールの内部組織とバルクの力学特性の相関を明らかにする意義は大きく、資源・エネルギー・環境問題等に貢献する新たな材料開発への展開が期待できる。計画研究により力学特性の解明と、各計画研究での新機能探索という位置付けも明確であり、実験と理論、計算を含めた各研究項目の有機的連携により、大きな研究成果が期待できる。さらに、複数の成果をもたらした研究者とともに、若手研究者が多く参画していることから、将来的研究領域の発展も期待できる。

なお、研究組織の偏りがあることや、特定領域研究「巨大ひずみ」からの重複が多く、物理、化学分野の研究者との連携を図ることが望ましいとの意見があった。また、材料創製プロセスがやや明確でないこと、公募研究における新機能探索という位置付けも明確である。これらの指摘事項が本領域研究の発展に大いに役立った。

前半部分の研究に対するコメントに対しては、「2．研究領域の設定目的の達成度」および「5．主な研究成果」「6．研究成果の取りまとめおよび公表の状況」に記述した通り、十分期待に沿う研究成果を出すことができたものと考えている。

研究組織に関しては、審査・採択された計画班の研究組織を大きく変更するような対応はそもそも困難であるが、各計画研究内で物理出身のポスドク研究員を雇用したり、異分野の連携研究者を取り入れることがあった。また、公募研究においては、バルクナノメタルの力学特性以外の機能特性に関する挑戦的の研究を積極的に採択し、研究活動コミュニティーの異なる研究者を多数取り込むことができた。その結果、新学術領域内の研究が活性化し、特にバルクナノメタルの力学特性に関する指摘事項が発表され、優れた成果が達成することに繋がった。また、組織が金属工学分野に偏りすぎていることも、研究者の意見を反映して採択され、成果が分かりやすくなった。さらに、参画者の多くは、必ずしも日本金属学会が主たる活動場所ではなく、日本機械学会、塑性加工学会、材料学会、物理学会、応用物理学会、金屬学会などで主たる研究発表活動を行っているメンバーが当初より多数含まれている。

「2．研究領域の設定目的の達成度」で述べたように、バルクナノメタル研究が多数の学会に拡がったことから、幅広いメンバー構成を反映している。材料創製プロセスがやや明確ではないが、指摘しているほうが、「新学術領域研究の大きな成果の一つは、新規な材料を含めた材料創製プロセスの充実と、汎用化である。すなわち、従来の巨大ひずみ加工プロセスに加え、鉄鋼材の相変態と塑性加工を組み合わせた深いひずみプロセス、完全再結晶バルクナノメタルの創製プロセス、粉末冶金法を応用した組成組織ナノメタルの創製など、優れた新材料創製プロセスが開発された。これらはA02・材料創製班を中心として、それぞれのグループからも提案されている。そして領域内の連携研究体制が構築され、これらのプロセス及びそれを含む材料を用いた研究が、領域内の多数の研究室で実施された。外部アドバイザーに関しては、「10．総括班評価者による評価」で示すように、産業界及び学界からのアドバイザー6名からなる外部アドバイザーボードを初年度に設置し、領域の運営と個々の研究に対して適切なアドバイスを受けられる体制を築いた。
【中間評価で指摘を受けた事項への対応状況】
2012年度に実施された本新学術領域研究に対する中間評価結果は、「A（研究領域の設定目的に照らして、期待どおりの進展が認められる）」であった。2012年10月9日付で連絡を受けた中間評価結果の所見は、下記の通りである。

【総合所見】
本研究領域では、金属材料について、添加元素に頼らずに新しい発想に基づいて強度と延性を兼ね備えた構造材料の確実という困難な目標にチャレンジしている点は評価できる。領域代表者の強いリーダーシップのもと、目的に対して期待通りの進展が認められ、構造材料分野の高いレベルの国際学術誌に多数の論文が掲載されていることからも、十分な研究成果が出ていることが認められる。領域内での共同研究も活発に行われており、若手研究者の育成の効果も認められる。

【評価にあたっての着目点ごとの所見】
(a) 研究の進展状況：「多様な研究者による新たな視点や手法による共同研究等の推進により、当該研究領域の新たな展開を目指すもの」としては、金属材料科学の不連続的、飛躍的発展について、基礎物性設計から材料創製、変形理論まで、バルクナノメタルという共通対象のもとに、個々に順調な成果をあげている。また、適切な研究者が密接に連携し、共同研究も活発に行われているなど、領域代表者の強力なリーダーシップが分野の活性化につながっていることは評価できる。
(b) 研究成果：「多様な研究者による新たな視点や手法による共同研究等の推進により、当該研究領域の新たな展開を目指すもの」としては、構造材料に関する高いレベルの国際学術誌に多数の論文が掲載されている。若手研究者の育成の成果も認められる。ただし、全体的には成果がまだ十分出していないという意見もあり、今後さらにイノベーションの大きな成果の発表が望まれる。
(c) 研究組織：若手研究者を計画研究代表者とするなど人材育成にも意欲的である。今後、物理・化学分野との一体連携を図り、より幅広い研究組織による学際的な発展を引き続き期待する。
(d) 研究費の使用：特に問題点はなかった。
(e) 今後の研究領域の推進方策：構造材料の重要な開発要素も取り入れ方向性を検討している点は評価できる。例えば、クリープに関しては、一般には粒界は変形を助長する因子となるが、その克服に向けたチャレンジも開始されている。実用化につながらる基礎研究を増やすことも必要と考えられるが、優れた組織とリーダーシップにより、十分今後の成果が出ることも期待したい。さらに、力学特性以外の興味深い物性についても、対象とすることが望まれる。

上記の通り、中間評価では本新学術領域研究に対して大変肯定的な評価をいただいた。しかし、そうした評価に甘んじることなく、新学術領域研究のさらなる改善と向上に心がけた。(b)研究成果に関しては、最終的に現時点で、学術雑誌論文824報、国際会議論文327報、学会発表1,948件、図書35件、産業財産権の出願・取得34件という、多大な成果をあげることができた。学術雑誌論文の多くは、関連分野の国際一流誌（Acta Mater., Scripta Mater., Adv. Eng. Mater., Phil. Mag., APL, J. Phys.など）に掲載され、「Science」（IF=31.364）(94)、「Advanced Materials」（IF=13.877）(19)、「Scientific Reports」（IF=5.078）(20), (95)などのいわゆるハイ・インパクト・ジャーナルにも論文が掲載された。さらに現時点でも複数の成果がこうした論文誌への掲載を目指す文化化されてつつある。ただし、インパクトファクターやハイインパクトジャーナルへの偏重は、学問分野の健全な発展のためには好ましくないと考えられ、優れた組織とリーダーシップにより、十分今後の成果が出ることも期待したい。また、強度と延性の両立の原理原則以上の具体的なアウトプットも望まれており、基礎的観点からの今後の展開を期待したい。さらに、力学特性以外の興味深い物性についても、対象とすることが望まれる。

(c)研究組織に関するコメントに関しては、前ページに述べたように、連携研究者や公募研究として、純粋物理・化学を含む幅広い学問分野の研究者を領域内に取り込み、バルクナノメタルに関する学際的な研究を大きく発展させることができた。例えば、別途提出の「研究領域全体に係るデータ」(エクセルファイル)の(2)発表論文に集計した通り、非平衡統計物理学、固体物理学、物性物理学、電磁気学(超伝導)、電気化学、生体工学、電気工学などの融合研究論文を、平成26年度だけで計71編発表できている。また、「10. 研究計画に参画した若手研究者の成長の状況」に詳細を示した通り、今後の発展を担う若手人材を多数育成できたことは、本新学術領域研究の大成の成果の一つである。

(e)今後の研究領域の推進方策に関するコメントについて述べる。ご指摘いただいたように、クリープなどの時間依存変形を含む構造材料の重要な開発要素も、数多く研究に取り組むことができた。バルクナノメタルのクリープに関しては、独自に開発された加速分子動力学計算法を用いて、温度・ひずみ速度と粒
径依存性を計算化学的手法により導くことに成功し、これは特筆すべき成果の一つである。社会と人命の安全に深く関わる構造材料には信頼性・安全性に関する慎重な検討が不可欠であり、数年間などの短期間で実用化できるものではない。しかし本新学術領域研究では、近未来の構造材料として期待の高いバルクナノメタルに関し、実用化につながることを見据えての研究も意識的に行い、基礎的観点から数多くの成果を上げることができた。例えば、強度と延性の両立の原理原則の確立のほか、バルクナノメタルにおける靭性向上の学理が実験研究と理論計算研究の融合により明らかになったことに加え、力学特性のバランスに優れた完全再結晶バルクナノメタルを創出することもできた。なお、公募班には企業（豊田中央研究所）からの提案も1件採択されており、実用化を視野に入れたバルクナノメタル合金に対する研究が行われたとともに、彼らとの議論は実用化を考える上で大変役に立った。また、バルクナノメタルの力学特性以外の興味深い物性も対象として、数多くの成果をあげることができた。具体的には、超伝導特性、水素吸蔵特性、半導体材料のバルクナノメタル化による物性変化などで特筆すべき成果を得た。
5. 主な研究成果（発明及び特許を含む）[研究項目ごとに計画研究・公募研究の順に整理する]
(3ページ程度)

本研究課題（公募研究を含む）により得られた研究成果（発明及び特許を含む）について、新しいものから順に発表年次をさかのぼり、図表などを利用して研究項目ごとに計画研究・公募研究の順に整理し、具体的に記述してください。なお、領域内の共同研究等による研究成果についてはその旨を記述してください。

本新学術領域研究では、現時点で計1150本以上の論文などとして取りまとめられた多大の研究成果を領域全体として得た。その内容は多岐にわたるが、以下には主要な研究成果のみ示す。また、ページ数の制限のため、図表等の表示は限られた研究項目のみについて行う。

【研究項目A01】バルクナノメタルの材料設計概念の確立
①バルクナノメタルにおける強度と延性の両立指針の獲得：バルクナノメタルは従来粒径材の3〜4倍に達する高強度を示すが、多くの場合引張延性、特に均一伸びに乏しい。こうした特性が、塑性不安定条件の早期発現によって理解できることを明らかにした。例えばひずみ速度非依存材料の場合、塑性不安定は、

\[\sigma \geq (d\sigma / d\varepsilon) \]

によって表される。結晶粒超微細化により降伏応力が大きく増加する一方で、粒内の構造が変わらない場合には加工硬化率も変化しない。その結果、超微細粒材料（バルクナノメタル）においては引張変形の初期に塑性不安定（くびれの発生）が生じてしまうのである。この理解に基づけば、なんらかの方法でマトリクスの加工硬化率（d\sigma / d\varepsilon）を増加させれば、バルクナノメタルにおいても強度と延性が両立できる可能性がある。実際に種々の合金において、ナノ析出物等の粒内微細分散、軟質相と硬質相から成る二相組織化、変形誘起マルテンサイト変態の利用などを試み、いずれの場合も強度と延性の両立に成功した。これは、最適な力学特性を有するバルクナノメタルの材料設計指針の一つを与えるものである。（A01ア班、一部A02ウ、A03オとの共同研究）

②完全再結晶バルクナノメタルの発見：Cu-Al合金（領域共通試料）や高Mnオーステナイト鋼において、強冷間圧延と適当な条件の焼鍊を組み合わせると、平均粒径400〜500nmの完全再結晶超微細粒組織が得られることを見出した。これらの完全再結晶バルクナノメタルは、①の知見に反して、降伏後も大きな加工硬化率を示し、高い強度と大きな延性を両立することが明らかとなった。（図3；A01ア班）

③高圧非平衡相のナノ組織化による安定化：高圧相をもつ鉄鋼材料（Fe-Mn-C系）と第IV族遷移金属（Ti, Zr）を高静水圧下で塑性変形してナノ組織化することによって、高圧相から常圧相への無拡散変態を抑制し、高圧相を常温・常圧下で安定化させることに成功するとともに、その力学特性を解明した。この成果は、構造材料において高圧非平衡相を利用した材質制御が可能であるという新たな指針を示すものである。（A01ア班）

④強加工ナノ組織可視化技術の構築：巨大ひずみ加工により形成されるナノ組織は、そもそも組織サイズが小さい上に格子欠陥密度が高く、詳細な観察と定量化が困難であった。STEM走査電子顕微鏡（PED）を利用したTEM方位マッピング環境（ASTAR）を構築し、バルクナノメタルの組織定量化を可能とした。図4には、公募班が見出したFe-Ni-Al-C合金強加工材（加工までをも含めた強度と延性を両立）に適用した結果である。SEM-EBSDでも解析困難な強加工超微細粒領域のナノ構造が、結晶学情報とともに可視化できている。（A01ア班、公募班との共同研究）

⑤バルクナノメタルの時間依存変形の原子論からの理解と変形理論の構築：加速MD手法を独自に開発し、バルクナノメタルのクリープ変形時に主として作動する1）粒界拡散、2）粒界運動、3）粒界転位生成、の3つの変形素過程と、それら

\[\text{図3 Cu-6.8wt\%Al合金における完全再結晶バルクナノメタルの組織とその真応力-真ひずみ曲線} \]

\[\text{図4 Fe-Ni-Al-C合金強加工材のSTEM-PED観察例} \]

\[\text{図5 加速MD計算により得られたクリープ変形機構図} \]
がそれぞれ支配的となる温度および負荷応力を原子論に基づく理論計算により明らかにし、変形メカニズムマップ（図5）を構築した。粒界だけのパルクナノメタルの塑性変形と粒界の役割を原理原則から明らかにし、変形予測モデルを構築した特筆すべき成果である。（A01イ班、A01ア、A03オとの共同研究）

⑥局所エネルギー・局所応力の第一原理計算法開発と粒界への適用：密度汎関数理論に基づく第一原理計算において、原子領域毎の局所エネルギー、局所応力を高精度で計算する手法を開発し成功し、AlやCu、Feの粒界に適用した。金属粒界の一面には、高エネルギーで引張応力のサイトと低エネルギーで圧縮応力のサイトの二つが生じ、引張と圧縮のサイトで不純物偏析の様子や構造が異なることが判明した。また、粒界的引張変形過程の原子・電子挙動解析にも極めて有効であることが示された。第一原理から粒界の関与する力学現象を明らかにしようとする先駆的な成果である。（A01イ班）

【研究項目A02】多様なプロセスによるパルクナノメタルの製造手法の確立

⑦巨大ひずみ加工によるパルクナノメタル製造の共通原理の解明：条件を精密に制御した巨大ひずみ加工によって各種金属の超強加工を行い、結晶粒超微細化の過程を調べた。金属の種類によって得られる粒径が異なるが、これは原子間結合エネルギーと良い相関を持つことを示した。この結果は、巨大ひずみ加工によるパルクナノメタル製造の基本原理となりうる重要な知見である。（A02ウ班）

⑧調和組織ナノ材料の創製：粉末超強加工（SPD-PM）プロセスを利用して、結晶粒径の差違に起因した周期構造、「調和組織」を造ることに成功した。図6に、超微細粒領域が三次元ネットワーク構造を組んだ調和組織とその機械的性質を示す。公募班による計算力学解析との連携の結果、調和組織内部の材料の局所的な応力とひずみの集中を抑制し、その結果、材料全体に加工硬化が進行して、高強度でありながらも高延性が実現されることを明かにした。（A02ウ班、公募班との共同研究）

⑨世界最高強度パルクナノ・Mg合金の開発：戦略物質となった希土類を添加せず、MDF(Multi-Directional Forging)法による結晶粒の超微細化によって、AZ80Mg合金のMDFにより平均結晶粒径は500nm以下となり、引張強度650MPa、延性約10%の極めて優れた機械的性質が達成された。この強度は希土類添加型Mg合金のそれら（400MPa）よりも高く、世界最高強度である。このプロセスを大型サイズ試料（142×128×141mm3）に適用し、構造部材としての利用が開始されている。

特許申請中、特願2011-143042、特願2012-072259（A02ウ班）

⑩相変態ルートによるパルクナノメタル製造：鋼の相変態ルートによる、安定したナノメタルの創製が可能となるプロセスウィンドウは必ずしも明らかでは無かった。変形モードを活用したパルクナノメタル製造に着目し、「単純せん断」「せん断を含まない単純圧縮」「圧縮せん断複合変形」、Nb鋼パルクナノメタル製造における相変態の程度を明らかにした（図7）。「単純せん断」「圧縮せん断複合変形」では相当塑性ひずみ25程度の、従来考えられていたよりも高い相当塑性ひずみでパルクナノメタル製造が可能であることを示し、HPT加工で作製したニオブ（Nb）における超伝導臨界温度Tcにおける図8に示すように臨界温度Tc、上部臨界マグ带Hc2、臨界電流密度Jcなどの超伝導パラメータが増強し、それ
らはナノ結晶化の効果であることを明らかにした。このほかにも、バルクナノ化したTiFe化合物における水素吸蔵特性の向上や、バルクナノAl合金における耐食性の向上が見出されている。こうした成果は、バルクナノ材料の機能性材料としての様々な可能性を示唆するものであり、異分野との連携を誘発して新たな学問領域の創成にも繋がりうる特筆すべき結果である。一部について特許出願中、特願2010-255634など（公募班、一部はA03ウとの共同研究）

【研究項目A03】バルクナノメタルの特異な力学特性の解明と体系化

②バルクナノメタルの特異な力学特性：バルクナノメタルは、金属・合金の種類によらず降伏点降下現象を起こす。Hall−Petch関係に異常強化（extra hardening）が生じる、変形の活性化体積が異常な温度依存性を示す、といった異常力学特性を数多く示すことを見出した。これらは「粒界だらけ」のバルクナノメタルにおける粒界と転位の相互作用に由来するものと考えられ、A03カの計算班らとの共同で、その発現機構を解明しつつある。（A03オ班、A01ア、A03カとの共同研究）

③バルクナノメタルにおける粒界からの転位発生モデルの構築：個々の粒の体積が減少し「粒界だらけ」となったバルクナノメタルでは、通常粒径金属とは異なり、転位の粒内での増殖や運動が大きく制御される。転位は粒界から発生し、粒界からの転位の排出により変形が律速されるモデル（図9）を考察し、それに基づく理論検討によって、活性化体積などの特異な力学特性を解明できることを明らかにした。これは、バルクナノメタル・超微細粒材料の転位による変形を考える上で重要となる理論上の進歩である。（A03オ班）

④破壊靭性に対する粒界の役割：バルクナノメタルの低温における高い破壊じん性の発現機構を明らかにするために、粒界・粒内き裂先端の塑性現象に対する粒界の役割を、実験・理論・計算機シミュレーションを駆使して明らかにした。これにより粒界遮蔽効果という新しい概念を創出し、ナノ構造体の破壊現象における粒界の役割の重要性を明らかにした（図10）。（A03カ班、A03オ班との共同研究）

⑤バルクナノメタルの変形機構解明のための大規模原子シミュレーション：バルクナノメタルの変形の基礎メカニズムを解明することを目的として、粒内転位源を含む多結晶モデルの大規模原子シミュレーションを行い、超微細粒金属で発現する特異な強化機構を明らかにした（図11）。これにより、従来のHall−Petch関係では説明できない超微細粒金属特有の降伏機構を説明できた（2014年度日本金属学会論文賞受賞）。またこの手法を用いてTiなど六方晶金属の転位芯構造に与える溶質元素の影響を解明し、その成果はScience誌に掲載された。（A03カ班）
6. 研究成果の取りまとめ及び公表の状況（主な論文等一覧、ホームページ、公開発表等）（5ページ程度）

本研究課題（公募研究を含む）により得られた研究成果の公表の状況（主な論文、書籍、ホームページ、主催シンポジウム等の状況）について具体的に記述してください。論文の場合は、新しいものから順に発表年次をかかのぼり、研究項目ごとに計画研究・公募研究の順に記載し、研究代表者には二重下線、研究分担者には一重下線、連携研究者には点線の下線を付し、corresponding author には左側に印を付してください。また、一般向けのアウトリーチ活動を行った場合はその内容についても記述してください。また、別添の「（2）発表論文の融合研究論文として整理した論文については、冒頭に◎を付してください。

本新学術領域の活動で得られた研究成果は、多数の論文および学会発表として積極的に公表された。

2015 年 6 月 15 日現在の全研究成果は、学術雑誌論文 824 報、国際会議論文 327 報、学会発表 1,948 報、図書 35 報、産業財産権の出願・取得 34 報で達している。また、ホームページやニュースレターの発行を通じて、領域の活動や成果を発信している。国際ワークショップや国内シンポジウムを主催したほか、関連分野の国際会議等を共催したり、関連学会でバルクナノメタルセッションを企画するなど、新しい学術分野の定着のために精力的に活動を行った。また、各大学のアカデミックデイやジュニアキャンパスでの情報発信を通じ、一般社会への積極的な公表とともに努めた。

以下に、主要な学術論文のリストを示す。上部の指示通り、融合論文には◎の印をつけていますが、別添ファイルは 2014 年度の結果のみを集計したものなので、2013 年度以前の融合論文には印をつけていない。また、異なる班間の連携研究成果には一重下線をつける。本領域の参画研究者には全て、N.Tsuji のように灰色ヘッダーをつけている。融合論文、連携論文が数多いことがわかる。

《主な論文》
【研究項目 A01】バルクナノメタルの材料設計概念の確立
計画研究 A01 A

【研究項目A02】多様なプロセスによるバルクナノメタルの製造手法の確立

計画研究A02

【参考文献】

【研究項目A02】

1. 計画研究A02×

2. 計画研究A02×

3. 計画研究A02×

4. 計画研究A02×

5. 計画研究A02×

6. 計画研究A02×

7. 計画研究A02×

8. 計画研究A02×

9. 計画研究A02×

10. 計画研究A02×

11. 計画研究A02×

12. 計画研究A02×

13. 計画研究A02×

14. 計画研究A02×

15. 計画研究A02×

16. 計画研究A02×

17. 計画研究A02×

18. 計画研究A02×

19. 計画研究A02×

20. 計画研究A02×

21. 計画研究A02×

22. 計画研究A02×

23. 計画研究A02×

24. 計画研究A02×

25. 計画研究A02×

26. 計画研究A02×

27. 計画研究A02×

28. 計画研究A02×

29. 計画研究A02×

30. 計画研究A02×

31. 計画研究A02×

32. 計画研究A02×

33. 計画研究A02×

34. 計画研究A02×

35. 計画研究A02×

36. 計画研究A02×

37. 計画研究A02×

38. 計画研究A02×

39. 計画研究A02×

40. 計画研究A02×

41. 計画研究A02×

42. 計画研究A02×

43. 計画研究A02×

44. 計画研究A02×

45. 計画研究A02×

46. 計画研究A02×

47. 計画研究A02×

48. 計画研究A02×

49. 計画研究A02×

50. 計画研究A02×

51. 計画研究A02×

52. 計画研究A02×

53. 計画研究A02×

54. 計画研究A02×

55. 計画研究A02×

56. 計画研究A02×

57. 計画研究A02×

58. 計画研究A02×

59. 計画研究A02×

60. 計画研究A02×

＜公募＞

1. ＜公募＞

2. ＜公募＞

3. ＜公募＞

4. ＜公募＞

5. ＜公募＞

6. ＜公募＞

7. ＜公募＞

8. ＜公募＞

9. ＜公募＞

10. ＜公募＞

11. ＜公募＞

12. ＜公募＞

13. ＜公募＞

14. ＜公募＞

15. ＜公募＞

16. ＜公募＞

17. ＜公募＞

18. ＜公募＞

19. ＜公募＞

20. ＜公募＞

【研究項目A03】バルクナノメタルの特異な力学特性の解明と体系化

計画研究A03オ

1. 計画研究A03オ

2. 計画研究A03オ

3. 計画研究A03オ

4. 計画研究A03オ

5. 計画研究A03オ

6. 計画研究A03オ

7. 計画研究A03オ

8. 計画研究A03オ

9. 計画研究A03オ

10. 計画研究A03オ

11. 計画研究A03オ

12. 計画研究A03オ

13. 計画研究A03オ

14. 計画研究A03オ

15. 計画研究A03オ

16. 計画研究A03オ

17. 計画研究A03オ

18. 計画研究A03オ

19. 計画研究A03オ

20. 計画研究A03オ

21. 計画研究A03オ

22. 計画研究A03オ

23. 計画研究A03オ

24. 計画研究A03オ

25. 計画研究A03オ

26. 計画研究A03オ

27. 計画研究A03オ

28. 計画研究A03オ

29. 計画研究A03オ

30. 計画研究A03オ

31. 計画研究A03オ

32. 計画研究A03オ

33. 計畫研究A03オ

34. 計画研究A03オ

35. 計画研究A03オ

36. 計画研究A03オ

37. 計画研究A03オ

38. 計画研究A03オ

39. 計画研究A03オ

40. 計画研究A03オ

41. 計画研究A03オ

42. 計画研究A03オ

43. 計画研究A03オ

44. 計画研究A03オ

45. 計画研究A03オ

46. 計画研究A03オ

47. 計画研究A03オ

48. 計画研究A03オ

49. 計画研究A03オ

50. 計画研究A03オ

51. 計画研究A03オ

52. 計画研究A03オ

53. 計画研究A03オ

54. 計画研究A03オ

55. 計画研究A03オ

56. 計画研究A03オ

57. 計画研究A03オ

58. 計画研究A03オ

59. 計画研究A03オ

60. 計画研究A03オ

計画研究A03

＜公募＞

【研究項目A01】バルクナノメタルの材料設計概念の確立

計画研究A01ア

【研究項目A02】多様なプロセスによるバルクナノメタルの製造手法の確立

計画研究A02ア

【研究項目A03】バルクナノメタルの特異な力学特性の解明と体系化

計画研究A03ア

本新学術領域の公式ホームページ（和文＋英文）を、初年度である2010年に下記に開設し、領域活動と研究成果の公開に努めた。

http://www.bnm.mtl.kyoto-u.ac.jp

主催シンポジウム

【1】第1回バルクナノメタル国際ワークショップ（The 1st Int. Workshop on Bulk Nanostructured Metals）：2012年6月26日～29日に、本領域の研究成果を国際的に発表し討論する場として京都大学時計台記念ホールにおいて開催した。国内外の招待講演87名の口頭発表と、主に若手研究者による58件のポスター発表が行われた。参加した外国人招待講演者からの本領域研究に対する評価コメントを「総括班評価者による評価」に示す。

【2】第2回バルクナノメタル国際ワークショップ（The 2nd Int. Workshop on Bulk Nanostructured Metals）：2015年8月3日～5日に、京都大学薬友会館にて開催予定。

【3】日本金属学会セミナー「バルクナノメタル 構造用金属材料の新たな可能性」、2011.9.14、東京

また、以下の関連シンポジウムを共催した。この他に、種々の学協会の定期講演大会等において「バルクナノメタル」の名を冠するなど関連シンポジウム・セッション・研究会を計12回開催した。

【2】The 4th German-Japanese Symp. on Nanostructures, 2011.3.21-25, Ristumeikan Univ., Shiga, Japan.

【3】The 5th Int. Conf. on Nanostructured Materials by Severe Plastic Deformation (NanoSPD 5), 2011.3.21-25, Nanjing, China.

【4】The 6th German-Japanese Symp. on Nanostructures, 2013.3.3-5, Ristumeikan Univ., Shiga, Japan.

【6】構造材料元素戦略研究拠点シンポジウム「3次元アトムプローブ法の構造材料研究への応用」2014.7.24、京都

【8】ESISM International Workshop, 2015.1.29-30, Kyoto, Japan.

【9】The 8th German-Japanese Symp. on Nanostructures, 2015.3.1-3, Ristumeikan Univ., Shiga, Japan.

【10】Int. Symp. on Giant Straining Process for Advanced Materials (GSAM 2015), 2015.9.4-6, Fukuoka, Japan. （予定）

ニュースレター

本領域研究の活動内容と研究成果を示す下記のニュースレター（英文）を印刷物及びPDF版として発行し、関連研究者や研究機関に配布して、領域研究活動の公知に努めた。

【1】第1号（No.1, August 2011）

【2】第2号（No.2, June 2012）

【3】第3号（No.3, October 2013）

【4】第4号（No.4, August 2015発行予定）

論文特集号

日本金属学会の欧文誌Materials Transactions誌（https://www.jstage.jst.go.jp/browse/matertrans/-char/ja/）において下記のバルクナノメタル特集号を編集・発行して成果を公表するとともに領域外からの関連論文も広く収録した。

【2】「Special Issue on Advanced Materials Science in Bulk Nanostructured Metals II」Materials Transactions, Vol. 54, No.9 (2013), 18編収録

【3】「Special Issue on Advanced Materials Science in Bulk Nanostructured Metals III」Materials Transactions, Vol.57 (2016)（2016年前半発行予定）

その他

京都大学アカデミックデイ 2014（2014.9.28）において「バルクナノメタルの科学」ブースを出展したり、2012年および2013年に京都大学ジュニアキャンパスで中学生向けにバルクナノメタル成果の紹介を含む模擬講義を行うなど、メンバーが所属する各所で一般への情報公開に努めた。
7. 研究組織（公募研究を含む）と各研究項目の連携状況（2ページ程度）

領域内の計画研究及び公募研究を含んだ研究組織と領域において設定している各研究項目との関係を記述し、どのように研究組織間の連携や計画研究と公募研究の調和を図ってきたか、組織図や図表などを用いて具体的かつ明確に記述してください。

本新学術領域内の連携は、総括班 X00 がその機能を十分発揮することにより、大変効果的に行われた。総括班 X00 は、領域全体の研究計画を管理するだけでなく、共通合金を設定・作製して希望研究者に配布し、また研究者間の連携のコーディネートも行った。こうした活動により、特に公募班に多かったバルクナノメタル研究への新規参入者の研究立ち上げをサポートし、計画班研究者との有機的な連携を確立することができた。また、各班は室の発表会だけでなく、異なる室の発表会・研究会を開いたので多数実施し、深い議論を行った。各計画班・公募班は当初の役割を果たしながら、最終的には領域が一体となって調和を保ちながらバルクナノメタル研究を遂行した。本領域研究が獲得した卓越した研究成果は、新学術領域研究のスキームを生かした密接な連携・共同研究によってもたらされたものである。

図 14 本領域の研究組織

本新学術領域の研究組織を上の図 14 に示す。本領域の計画班は、A01、A02、A03 の 3 つの研究グループより成っている。それぞれの研究グループは、バルクナノメタルの材料設計概念の確立（A01）、多様なプロセスによるバルクナノメタルの製造手法の確立（A02）、バルクナノメタルの特異な力学特性の解明と体系化（A03）に関する研究を行う。また 3 つの研究グループはそれぞれ、実験を主体にする研究班と、理論・計算を主体とする研究班のペアから成っており、バルクナノメタルに関する実験研究と理論・計算研究の融合を図ることも、本領域研究の重要な目的である。総括班 X00 は、領域全体の研究計画をデザイン・管理統括するとともに、情報発信機能を担う。総括班は、6 つの計画班の研究代表者 6 名から成っている。以上のように、本領域内には総括班を含めて 7 つの計画班が設置されている。公募班は、計画班のない解
析手法を領域に導入することを目的として、力学特性以外の機能特性探索への挑戦的研究所を積極的に取り入れることとした。第 1 期（2011〜2012 年度）に 14 の公募班が、第 2 期（2013〜2014 年度）には 13 の公募班が採択され、領域に参画した。

領域内の連携を密にするための機能を総括班 X00 に持たせた。すなわち、総括班内で計画班代表者の間の連絡を密にし、各班の研究状況を把握した上で、研究者間の適切な連携をコーディネートした。特に公募班には新規機能特性探索を求めたため、過去にバルクナノメタル研究の経験のない新規参入研究者が多くいたので、公募班が採択された初年度（2011 年度と 2013 年度）は失敗を速やかなコーディネートを行うようにした。また、研究者間の要望を聞いた上で領域内で用いる共通試料（合金）を設定し、総括班予算で外注・購入して、希望研究者に配布した。こうした共通試料を設けることで、異なる研究室・班間の連携が促進された。また試料が標準化されることで実験データの比較検討が容易になり、学問的理解が深まった。
共通試料とは別に、各研究者が希望する材料については、パルクナノメタルの作製が可能な研究室との連携を推奨・アレンジし、各グループの研究を速やかに軌道に乗せることが成功した。特に材料創製の役割を担うA02ウ班が活発に連携を行ってくれたため、質の保証されたパルクナノメタル試料が入手できないといったことによる研究の遅滞を避けることができた。試料提供先の役割を担った主要研究室とその試料提供先を上の表にまとめた。こうしたネットワークが、領域内の連携の強化に重要な役割を果たした。

各年度2回開催された全体会議・報告会の他に、個々の班内、あるいは異なる班間の勉強会・研究会が活発に実施された。右の表には、実施された全体会議・研究会の役割を具体的に列挙する（ただし記録を取っている第2年度以降）。32回の勉強会が開催されている。それぞれ、関連する公募班や、興味のある他班の研究者も参加している。こうした密接な討論により、パルクナノメタル研究に対する相互理解が深まり、本領域では多大な成果をあげることができた。

「6. 研究成果の取りまとめ及び公表の状況」に述べた通り、本領域研究ではこれまでに、学会誌等論文、824報の成果を上げることができている。このうち、異なる班間の共著論文は100報（12.1%）であるが、同じ班だが異なる研究室間のものも含めると、132報（16.0%）となっている。こうした数字は、本新研究領域研究において研究者間で密接な連携が行われたことを反映するものである。
研究経費の使用状況（設備の有効活用、研究費の効果的使用を含む）（1ページ程度）

領域研究を行う上で設備等（研究領域内で共有する設備・装置の購入・開発・運用・実験資料・資材の提供など）の活用状況や研究費の効果的使用について総括班研究課題の活動状況と併せて記述してください。

総括班予算により領域内共通試料を作製・配布したり、各研究室で導入した試料作製設備、材料解析装置などを幅広く共有し、研究費を効果的に使用することができた。これらは領域内の連携研究を促進する効果があったとともに、今後中長期に関連分野の研究基盤として有効活用することができる。

3. 研究領域の研究推進時の問題点と当時の対応状況

7. 研究組織と各研究項目の連携状況

領域研究を行う上で、バルクナノメタル試料を作製する必要がある。例えば巨大ひずみ加工プロセスはバルクナノメタルの有効な作製手法であるが、本新学術領域研究の開始時点において、巨大ひずみ加工プロセスで十分な試料を作製できる拠点は、九州大学（ECAP・HPT）、豊橋技科大学（HPT）、京都大学（ARB）程度であった。本領域研究の資金によりこれら作製拠点の設備が増強され、「7. 研究組織と各研究項目の連携状況」で具体的に示したように、領域内の幅広いグループへの試料提供が可能となった。また、プロセス装置の新たな導入等により、ECAP は大阪市立大学および兵庫県立大学においても、HPT は京都大学と物質・材料研究機構においても、また ARB は東京工業大学と東北大学においても実施可能となり、また豊橋技科大で多軸鍛造プロセスが実施可能となった。さらに、立命館大学における粉末冶金プロセスを利用した調和組織バルクナノメタルや、兵庫県立大学および同志社大学における電析ナノメタル創製が確立された。次ページの主要物品表における「ARB 加圧延延機」「熱間 ECAP 加工装置」その他がこれらに対応する。各地方の拠点におけるこうした設備と手法は領域内の研究者に開放され、バルクナノメタル試料を幅広く提供することを可能とするとともに、試料作製に伴う人の往来を活発化し、結果として連携研究を促進する効果もあった。

また、先端電子顕微鏡法など、最先端の材料解析手法を具備することも、本領域研究の特徴であった。既存のこれら設備・手法が領域内で共用されるとともに、幾つかの新たな解析手法も本領域研究で導入された。例えば次ページの表にある ASTAR・TEM 内ナノ領域結晶方位解析システム（九州大学）は、透過電子顕微鏡の中で nm スケールの方位マッピングを行うという、わが国で初めて導入された設備であり、バルクナノメタル研究に役立ったことは当然として、材料研究者に幅広く興味を持たれている。また、SEM/EBSD などのナノインデンテーション、引張試験機などの本領域研究で導入された比較的汎用な装置類も、個々の研究室のみで使用するのではなく、領域内の連携研究に幅広く共有された。また、茨城大学が有していた J-PARC における中性子回折手法や、兵庫県立大学が有していた SPring-8 における放射光実験方法も、領域内の複数の共同研究者に使われるようになり、これら大型施設の用途拡大にも寄与することができた。

以上のよう、本領域における研究費は、新学術領域研究の意図を踏まえて有効に使用することができた。本領域研究に参画した各研究室は、今後 20 年にわたってわが国の構造用金属材料研究の中心を担う重要な研究室である。したがって、本新学術領域研究の資金により導入された設備は、領域研究で築き上げられたネットワークを利用して、バルクナノメタル新学術領域終了後も有効に活用されるものであり、高い費用対効果を上げたと考えられる。

<table>
<thead>
<tr>
<th>5年間で作製した共通合金(mass%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe-0.15C-0.25Si-1.4Mn</td>
</tr>
<tr>
<td>Fe-0.15C-0.25Si-1.4Mn-0.030Nb</td>
</tr>
<tr>
<td>Fe-0.1C-3Mn-0.02Nb</td>
</tr>
<tr>
<td>Fe-0.15C-0.25Si-1.4Mn-0.03Nb(追加作製)</td>
</tr>
<tr>
<td>Ni-20Co</td>
</tr>
<tr>
<td>Ni-40Co</td>
</tr>
<tr>
<td>Cu-10Zn</td>
</tr>
<tr>
<td>Cu-20-Zn</td>
</tr>
<tr>
<td>Cu-30Zn</td>
</tr>
<tr>
<td>Cu-2Al</td>
</tr>
<tr>
<td>Cu-5Al</td>
</tr>
<tr>
<td>Cu-7Al</td>
</tr>
</tbody>
</table>
研究費の使用状況

（1）主要な物品明細（計画研究において購入した主要な物品（設備・備品等。実績報告書の「主要な物品明細書」欄に記載したもの。）について、金額の大きい順に、枠内に収まる範囲で記載してください。）

<table>
<thead>
<tr>
<th>年度</th>
<th>品名</th>
<th>仕様・性能等</th>
<th>数量</th>
<th>単価（円）</th>
<th>金額（円）</th>
<th>設置(使用)研究機関</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>ASTAR (TEM 内ナノ領域結晶方位解析)システム</td>
<td>NanoMEGAS 社製/ASTAR システム</td>
<td>1式</td>
<td>21,976,500</td>
<td>21,976,500</td>
<td>九州大学</td>
</tr>
<tr>
<td></td>
<td>ARB 加工圧延機</td>
<td>大東製作所/容量150tonf・特注</td>
<td>1式</td>
<td>15,498,000</td>
<td>15,498,000</td>
<td>京都大学</td>
</tr>
<tr>
<td></td>
<td>オートグラフ (精密万能試験機)</td>
<td>島津製作所製/AG-X 高剛性型</td>
<td>1式</td>
<td>12,000,000</td>
<td>12,000,000</td>
<td>東京工業大学</td>
</tr>
<tr>
<td></td>
<td>万能試験機</td>
<td>インストロング社製/Type5967 30kN</td>
<td>1式</td>
<td>6,300,000</td>
<td>6,300,000</td>
<td>大阪市立大学</td>
</tr>
<tr>
<td>23</td>
<td>電解放出型走査電子顕微鏡</td>
<td>日本電子株式会社製 JSM-7001F</td>
<td>1式</td>
<td>14,994,000</td>
<td>14,994,000</td>
<td>東京工業大学</td>
</tr>
<tr>
<td></td>
<td>熱間 ECAP加工装置</td>
<td>最大出力 50 kN,最大速度 30 mm/S,ストローク：200 mm ファイティング社製、特注品</td>
<td>1式</td>
<td>8,494,500</td>
<td>8,494,500</td>
<td>兵庫県立大学</td>
</tr>
<tr>
<td></td>
<td>精密万能試験機</td>
<td>島津製作所製forex</td>
<td>1式</td>
<td>4,987,500</td>
<td>4,987,500</td>
<td>京都大学</td>
</tr>
<tr>
<td>24</td>
<td>ハイドロン社製トライボインデンター</td>
<td>結晶方位解析システム</td>
<td>1式</td>
<td>21,749,700</td>
<td>21,749,700</td>
<td>東京工業大学</td>
</tr>
<tr>
<td></td>
<td>ワイヤ放電加工機</td>
<td>三菱電機社製/E40109</td>
<td>1式</td>
<td>11,700,000</td>
<td>11,700,000</td>
<td>九州大学</td>
</tr>
<tr>
<td>25</td>
<td>西部電機株式会社製 M35A</td>
<td>浸漬式バイヤー放電加工機</td>
<td>1式</td>
<td>12,762,750</td>
<td>12,762,750</td>
<td>東京工業大学</td>
</tr>
<tr>
<td></td>
<td>鋼材中水素測定システム</td>
<td>JFT20A</td>
<td>1式</td>
<td>8,066,625</td>
<td>8,066,625</td>
<td>京都大学</td>
</tr>
<tr>
<td></td>
<td>PID 式酸素分析装置</td>
<td>ステイリーラボ (株)</td>
<td>1式</td>
<td>3,150,000</td>
<td>3,150,000</td>
<td>大阪大学</td>
</tr>
<tr>
<td>26</td>
<td>日立ハイテクノロジーズ製/IM4000 型</td>
<td>イオントリミング装置</td>
<td>1式</td>
<td>9,450,000</td>
<td>9,450,000</td>
<td>東京工業大学</td>
</tr>
<tr>
<td></td>
<td>日立ハイテクノロジーズ社製/SU1510</td>
<td>走査型電子顕微鏡</td>
<td>1式</td>
<td>7,992,000</td>
<td>7,992,000</td>
<td>兵庫県立大学</td>
</tr>
<tr>
<td></td>
<td>島津製作所製/4830 リフレッシュキット</td>
<td>疲労試験機用制御装置</td>
<td>1式</td>
<td>2,590,920</td>
<td>2,590,920</td>
<td>大阪市立大学</td>
</tr>
<tr>
<td></td>
<td>株式会社米倉製作所製/TP1-2 型</td>
<td>加熱ユニット</td>
<td>1式</td>
<td>2,205,900</td>
<td>2,205,900</td>
<td>九州大学</td>
</tr>
</tbody>
</table>
計画研究における支出のうち、旅費、人件費・謝金、その他の主要なものについて、年度ごと、費目別に、金額の大きい順に使途、金額、研究上必要な理由等を具体的に記述してください。

【平成22年度】

旅費
- **A01 ウ**: 館山 恵
 - イタリア・ドイツ学会参加、794,768 円（PM2010 研究成果発表、ドイツ ZOS 共同研究打合せ）
- **A01 ア**: 香山正憲
 - 11/8-13 中国出張、218,700 円（ICAS2010 参加、成果発表）
- **A03 カ**: 下川智嗣
 - 北海道出張、182,980 円（国内会議日本機械学会 日本金属学会参加、研究成果報告）
- **A02 エ**: 柳本 润
 - 中国出張、218,700 円（ICAS2010 参加、成果発表）

人件費・謝金
- **A01 イ**: 大阪大学 特任研究員 1 名雇用、1,726,638 円（バルクナノメタルの原子論的研究）
- **A02 エ**: 東京大学生産技術研究所 謝金・アルバイト、900,000 円（実験補助およびデータ整理に対して）
- **A01 ウ**: 立命館大学 アルバイト謝金、802,800 円（実験データ整理）

その他
- **A01 ウ**: Rotating Bending Fatigue HCF 加工、528,360 円（金属の疲労特性実験のため）

【平成23年度】

旅費
- **A01 ウ**: 館山 恵
 - カナダ出張、830,380 円（Riso 国立研究所で打合せ、Thermech2011 参加、発表）
- **A02 エ**: 柳本 润
 - カナダ出張、512,411 円（Thermech2011 に参加 研究成果公表、関連分野の動向調査）
- **A01 ウ**: 飴山 恵
 - 福岡・沖縄 204,500 円（BNM 報告会参加、日本金属学会秋季大会研究成果発表）

人件費・謝金
- **A01 イ**: 大阪大学 特任研究員 3 名雇用、6,049,496 円（バルクナノメタルの原子論的研究）
- **A03 カ**: 金沢大学 ポスドク 1 名雇用、3,167,611 円（粒界から転位が放出する原子モデリング研究）

その他
- **A01 ウ**: 走査電子顕微鏡 Sirion 消耗部品交換作業、1,434,405 円（研究に必要な顕微鏡観察のため）

【平成24年度】

旅費
- **A01 ウ**: 館山 恵
 - オーストラリア出張、668,054 円（AMPT2012 にて研究成果発表）
- **A01 イ**: 館山 恵
 - カナダ出張、384,910 円（Riso 国立研究所で打合せ、Thermech2011 参加、発表）

人件費・謝金
- **A01 イ**: 大阪大学 特任研究員 1 名雇用、5,471,243 円（バルクナノメタルの原子論的研究）
- **A03 カ**: 金沢大学 ポスドク 1 名雇用、3,622,290 円（APS 参加、成果発表）

その他
- **A02 エ**: Nb 鋼のせん断変形組織の観察、594,300 円（研究上必要な顕微鏡観察費用として）

【平成25年度】

旅費
- **A01 イ**: 尾方成信
 - 米国出張、661,710 円（MIT:Ju Li, Stanford:Wei Cai 訪問,PRICM8 参加、成果発表）
平成26年度

人件費・謝金

<table>
<thead>
<tr>
<th>研究施設</th>
<th>所属</th>
<th>姓氏</th>
<th>出張先</th>
<th>旅行費 (円)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>ア</td>
<td>辻伸泰</td>
<td>ドイツ・デンマーク</td>
<td>931,752</td>
</tr>
<tr>
<td>A01</td>
<td>イ</td>
<td>尾方成信</td>
<td>ジャマイカ</td>
<td>1,144,470</td>
</tr>
<tr>
<td>A03</td>
<td>カ</td>
<td>新山友晃</td>
<td>米国</td>
<td>354,203</td>
</tr>
<tr>
<td>A02</td>
<td>エ</td>
<td>金沢大学</td>
<td>ポスドク</td>
<td>5,067,661</td>
</tr>
<tr>
<td>A01</td>
<td>イ</td>
<td>金沢大学</td>
<td>ポスドク</td>
<td>5,070,700</td>
</tr>
<tr>
<td>A02</td>
<td>エ</td>
<td>東京大学生産技術研究所</td>
<td>ポスドク</td>
<td>3,994,980</td>
</tr>
<tr>
<td>A01</td>
<td>ア</td>
<td>京都大学</td>
<td>ポスドク</td>
<td>3,196,275</td>
</tr>
<tr>
<td>A01</td>
<td>イ</td>
<td>大阪大学</td>
<td>特任研究員</td>
<td>2,910,303</td>
</tr>
<tr>
<td>A01</td>
<td>イ</td>
<td>大阪大学</td>
<td>特任研究員</td>
<td>2,910,303</td>
</tr>
<tr>
<td>A02</td>
<td>エ</td>
<td>東京大学生産技術研究所</td>
<td>ポスドク</td>
<td>3,994,980</td>
</tr>
<tr>
<td>A01</td>
<td>ア</td>
<td>シュナイダー</td>
<td>ドイツ</td>
<td>1,998,000</td>
</tr>
<tr>
<td>A01</td>
<td>イ</td>
<td>Fe-Mn-C合金製作</td>
<td>626,400</td>
<td></td>
</tr>
<tr>
<td>A01</td>
<td>ア</td>
<td>SPring-8施設</td>
<td>使用料</td>
<td>424,680</td>
</tr>
<tr>
<td>A02</td>
<td>エ</td>
<td>試験機定期点検</td>
<td>368,928</td>
<td></td>
</tr>
</tbody>
</table>

X00

<table>
<thead>
<tr>
<th>作成内容</th>
<th>価格 (円)</th>
</tr>
</thead>
<tbody>
<tr>
<td>結果報告書</td>
<td>250,236</td>
</tr>
</tbody>
</table>

（3）最終年度（平成26年度）の研究費の繰越しを行った計画研究がある場合は、その内容を記述してください。

該当なし。
9. 当該分野分野及び関連学問分野への貢献度（1ページ程度）

本新学術領域の活動は国際的にも大変注目され、得られた研究成果は世界に大きなインパクトを与える、我が国のバルクナノメタル研究は確固たる基盤を築いた。バルクナノメタル研究は国際的にも大変注目され、得られた研究成果は世界に大きなインパクトを与え、我が国のバルクナノメタル研究は確固たる基盤を築いた。バルクナノメタル研究は国際的にも大変注目され、得られた研究成果は世界に大きなインパクトを与えた。本領域以後に開始された幾つかの構造材料大型研究プロジェクトにおいても、本領域に参加した研究者が数多く中核で活躍している。

本新学術領域・バルクナノメタルが主にカバーする超微細粒材料分野は、構造材料研究において過去20年間で最も活発に研究活動が行われてきた分野である。バルク多結晶金属系材料において得られる最小平均粒径は、従来10μm程度であった。それに対し、バルク多結晶金属系材料において得られた研究結果は世界に大きなインパクトを与え、わが国における超微細粒材料（バルクナノメタル）研究の隆盛に重要な役割を果たした。本分野の成果は、例えば日本金属学会の定期講演大会ではバルクナノメタル・公募シンポジウムが4回開催され、材料学会欧文誌・Materials TransactionでBulk Nanostructured Metals特集号が2回刊行された。その結果、常設セッションとして「超微細粒（バルクナノメタル）」が設けられるなど、バルクナノメタル分野は金属材料分野だけでなく、幅広い分野・学会に裾野を拡大することができた。機械学会、材料学会、材料工学などでは数多くの研究発表がなされ、公募研究を中心にバルクナノメタルの機能特性についても興味深い結果が得られたことから、特に、物性物理をはじめとする物理研究者や、電気化学をはじめとする化学研究者にもバルクナノメタルへの興味が広がりつつある。特に、実験系材料科学・材料工学分野と計算材料科学分野の間に確立された連携が築かれたことが、今後の材料科学・工学分野の発展を考えると重要である。さらに、科学者間の相互理解に基づく密接な関係を築くことができる。計算と実験の融合は、材料科学分野が今後進むべき重要な方向であり、本領域研究はその優れた成就例となることができた。
10. 研究計画に参画した若手研究者の成長の状況（1ページ程度）

研究領域内での若手研究者育成の取組及び参画した若手研究者の研究終了後の動向等を記述してください。

次代を担う若手研究者の育成は、当初より本新学術領域の必要な目的の一つであり、領域研究活動により多大な成果を上げた。数多くの学生の育成と研究室の活性化に寄与するとともに、若手・中堅研究者数多くのアカデミックポジションを獲得することができた。

本新学術領域研究では、次代を担う若手研究者の人材育成を、当初から重要な目的の一つとして掲げていた。領域申請当時の計画班の研究者の平均年齢は、43歳であり、その後も若手研究者を積極的に登用して、自発的・自律的な研究活動を奨励してきた。参画研究室にはそうした方針にご理解とご協力いただいた。また、優秀な若手ポストドク研究員を本研究費により積極的に雇用し、活発な研究活動を展開した。各学会におけるセミナー・講演会で若手研究者による招待講演等を積極的に企画し、金属学会欧文誌で2回発行したバルクナノメタル特集号では、若手送言各2名による運営を行った。そうした雰囲気作りによって、若手研究者が伸び伸びと自由に活動できる環境が構築された。

「研究組織と各研究項目の連携状況」に記述したように、本研究領域内では、研究室や班の垣根を越えた共同研究、連携研究が活発に行われ、班内および班横断の勉強会も多数開催された。その結果、シニア・中堅人材だけでなく、若手研究者や院生も含めてメンバーが顔見知りとなり、人材交流も活発に行われた。次ページの非公開部分に具体的に列挙した通り、期間中に本研究領域に参画した若手・中堅研究者49名が、新たにアカデミックポジションを獲得したり、昇任した。新たに就いたポジションは、教授8名、准教授17名、講師4名、助教12名、主幹研究員1名、主任研究員1名、研究員6名に達している。外国人研究者も数多く含まれていることは、本領域研究が国際的な環境下で実施されたことを示している。もちろんこれは本研究領域のみの功績ではなく、各研究者の努力の賜物であるが、彼らが今後20年間の関連分野を支える貴重な人材であることは疑いがなく、こうした人材を広く輩出できたことは、本研究領域における人材育成が大きな成果をあげたと結論づけることができる。

下の表には、本研究領域内のバルクナノメタル研究による卒業・学位取得者の数をまとめている。5年間で学部生268名、修士238名、博士44名の教育に貢献することができた。彼らの多くは、アカデミックポジションの他に、素材産業をはじめとする企業の研究・開発部門に就職している。また、これだけの数の学生がバルクナノメタル研究に携わったということは、各研究室の研究活動が大変活発であったことを意味している。すなわち、教育と構造材料分野の活性化という点においても、本新学術領域研究は大きな成功を収めた。

<table>
<thead>
<tr>
<th>年度</th>
<th>学部卒業</th>
<th>修士</th>
<th>博士</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>33人</td>
<td>26人</td>
<td>2人</td>
</tr>
<tr>
<td>2011</td>
<td>44人</td>
<td>36人</td>
<td>11人</td>
</tr>
<tr>
<td>2012</td>
<td>55人</td>
<td>41人</td>
<td>12人</td>
</tr>
<tr>
<td>2013</td>
<td>66人</td>
<td>65人</td>
<td>8人</td>
</tr>
<tr>
<td>2014</td>
<td>70人</td>
<td>70人</td>
<td>11人</td>
</tr>
<tr>
<td>合計</td>
<td>268人</td>
<td>238人</td>
<td>44人</td>
</tr>
</tbody>
</table>

下表には、院生や若手研究者の主要な受賞状況を示す。40歳以下の若手研究者の受賞件数は、総数197件に達している。また若手研究者が国内会議・国内会議で行った招待講演も、127件に及んでいる。このこともまた、本新学術領域研究内で若手研究者が実力を伸ばし成長したことを反映するものである。

日本金属学会論文賞	2件	日本マグネシウム学会奨励賞	1件
日本鉄鋼学会 頒論文賞	1件	風戸研究奨励賞	1件
日本材料学会優秀論文賞	1件	JIM Young Leader Award	1件
日本鋼学会論文賞	1件	軽金属学会希望の星賞	4件
日本計算工学会 論文奨励賞	1件	日本機械学会若手優秀論文奨励賞	4件
日本金属学会若手講演論文賞	2件	日本鉄鋼学会研究奨励賞	2件
日本金属学会卒業研究奨励賞	1件	日本材料学会 MD賞	3件
日本金属学会若手研究奨励賞	2件	粉体粉末冶金学会優秀講演発表奨	1件
日本金属学会奨励賞	4件	日本顕微鏡学会優秀研究賞	1件
日本金属学会村上奨励賞	1件	日本金属学会優秀ポスター賞	33件
日本機械学会奨励賞	1件	日本鉄鋼学会学生ポスター優秀賞	10件
軽金属学会奨励賞	1件	努力賞	14件
総括班X00では、第1年目に、学界3名、産業界3名の委員（計6名）から成る外部評価組織（アドバイザリーボード）を設置し、各年度の全体報告会や個別勉強会、セミナー、国際WSなどへのご参加の度度コメントやアドバイスをいただいた。それら有益なコメントは、新学術領域研究を運営していくに際し、大変役に立った。5年間の研究期間終了を受け、これまでに得られた成果を開示した上で、各評価委員からは下記の評価コメントを受け取っている。本新学術領域研究の成果と若手人材育成を含む活動に対していずれも肯定的な評価を与えられており、中でも得られた基礎研究成果に対して産業界から高い評価が得られていることは、特筆すべき点である。

【森永正彦（TOYOTA PHYSICAL & CHEMICAL RESEARCH INSTITUTE、名古屋大学名誉教授）】
バルクナノメタルプロジェクトの年度毎の報告会に出席し、この新学術領域の研究がますます発展していることを実感している。5年間の研究内容の進化のみならず、若手研究者が育っていることも評価できる。この十分な成果を背景とし、次のプロジェクトを立ち上げられることを期待する。

【幾原雄一（東京大学 教授）】
本新学術領域研究は、構造材料における新しい概念の構築を目指す内容であり、今後の材料学発展のための基盤となる研究分野である。本領域研究を通じて、サブミクロンの粒径を有するバルクナノメタルの微細組織と力学的特性の相関を系統的に明らかにし、これを効果的にプロセス技術へと展開することによって、構造材料における新たな領域を開拓することも期待されている。また、計画班および公募班の連携も効果的・効率的に進め、多数の学術雑誌への掲載をはじめとして内外での学会発表も勢力的に行っている。これらの成果は、国際的にも高く評価されている。さらに、国際会議の主催、公開シンポジウムの開催、学術雑誌特集号も企画し、プロジェクト構成メンバーの旺盛な実行力により本領域のコンセプトおよび関連成果の広範な周知もなされた。本プロジェクトで達成された学術的見解の蓄積と人的基盤の構築は、我国における構造材料のさらなる発展のための基盤をなすものと考えられ、高く評価できる。

【渋谷陽二（大阪大学 教授）】
本新学術領域研究は、代表寸法1ミクロン以下の究極の不均質内部構造を材料創成から始まり、材料的・機械的特性を明確にすることを目的とした。変形や強度発現のメカニズムについて最先端レベルの実験的・計算力学的手法を用いて解明した。加えて、力学的特性のみならず、電磁気特性や超伝導特性といった機能特性を系統的に明らかにし、構築材料でありながら機能性を具備した新たな材料を開発したと言える。さらに、国際的な研究者集まり、公開シンポジウムの開催、学術雑誌特集号も企画し、プロジェクト構成メンバーの旺盛な実行力により本領域のコンセプトおよび関連成果の広範な周知もなされた。本プロジェクトで達成された学術的見解の蓄積と人的基盤の構築は、我国における構造材料のさらなる発展のための基盤をなすものと考えられ、高く評価できる。

【潮田耕作（新日鉄住金株式会社 フェロー）】
バルクナノ組織の創製技術の確立、バルクナノ材料の飛躍的特性の発現、およびその背景にある科学の構築は、次世代の構造材料に対する新指針を提案するものであり、産業界から見ても重要な分野と期待されている。特に、熱的に安定なバルクナノ材料は、従来の常識を覆す研究成果の代表例である。また、次世代の新素材開発（新学術領域）を問わずで産業界でも注目されていると言える。さらに、材料科学の分野にとどまらず幅広い分野の研究者を集め、若手研究者の育成にも力をいれてきたことは実績が示すとおりで、初期目標以上に十分に達成したと評価できる。

【中西栄三郎（日産自動車（就任時）、現・東京製鐵株式会社 技術開発部）】
新学術領域「バルクナノメタル〜常識を覆す新しい構造材料の科学」の言葉通り、金属材料の新しい学術領域を築かれた活動であったと思われる。今後、サブミクロン以下の結晶、相をからなる材料が工業生産される未来においても、材料科学としての成果と言えるのではないか。今回の取り組みの体制についても、多くの先端領域での研究者が横断的に連携され、シンジアーゴが得られたものと探察される。それは、学術雑誌論文数、解説論文、国際学会等の基調講演や招待講演数の多さに現われているのではなく、今後の体制・連携は、今後の学術研究の在り方として手本になるものと思われる。
【前田 恭志（神戸製鉄所）】

“バルクナノメタル”をキーワードに微細金属組織に関する多方面（元素・原子、転位、界面、加工、機械的特性、計算科学）からの高度な学術的・先進的な研究が成されたと思います。各研究テーマからも、多くの学術論文、学術発表により、国内外における認知度は高まり、新たな学術分野として確立した経緯は本プロジェクトの大きな成果の1つと思います。また、産業界としても、新たな金属組織としてその実用化には注目しておりますが、それに増して今回のプロジェクトにより国内の多くの研究者が金属材料のミクロな挙動に関して新な知見を発見し、その成果は通常の金属材料へと適用を進めれば計り知れない成果に結び付き、国内金属産業界の人材面も含めて大きな成果であったと思います。

2012年6月26日〜29日に、本領域の研究成果を国際的に発表し討論する場としてInternational Workshop on Bulk Nanostructured Metalsを、京都大学時計台記念ホールにおいて開催した。国内外の招待講演者20名の口頭発表と、主に若手研究者による58件のポスター発表が行われた。その際、下記の外国人招待講演者から、次頁に添付する評価コメントもいただいている。なお、最新の研究結果を議論し、5年間の成果を総括することを目的として、2015年8月3日〜5日に、第2回の国際ワークショップを京都大学・楽友会館において開催する予定である。

第1回国際ワークショップ・外国人招待講演者リスト

<table>
<thead>
<tr>
<th>氏名</th>
<th>所属</th>
<th>国名</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrew Godfrey</td>
<td>Tsinghua University, Professor</td>
<td>P.R.China</td>
</tr>
<tr>
<td>Niels Hansen</td>
<td>Risoe-DTU, Senior Researcher</td>
<td>Denmark</td>
</tr>
<tr>
<td>Xiaoxu Huang</td>
<td>Risoe-DTU, Senior Researcher</td>
<td>Denmark</td>
</tr>
<tr>
<td>Hyoung-Seop Kim</td>
<td>POSTECH, Professor</td>
<td>Korea</td>
</tr>
<tr>
<td>Reinhard Pippan</td>
<td>Erich Schmid Institute of Materials Science, Professor</td>
<td>Austria</td>
</tr>
<tr>
<td>Nairong Tao</td>
<td>Institute of Metal Research, Chinese Academy of Sciences, Senior Researcher</td>
<td>P.R.China</td>
</tr>
<tr>
<td>Gerhard Wilde</td>
<td>University of Munster, Professor</td>
<td>Germany</td>
</tr>
<tr>
<td>Michael Zehetbauer</td>
<td>University of Vienna, Professor</td>
<td>Austria</td>
</tr>
<tr>
<td>Ting Zhu</td>
<td>Georgia Institute of Technology, Professor</td>
<td>U.S.A.</td>
</tr>
</tbody>
</table>
Report on the Bulk Nanostructured Metals

(Project Leader: Prof. Nobuhiro Tsuji, Kyoto University)

A new research program entitled “Bulk Nanostructured Metals” (BNM program) was initiated in July 2010 and will terminate in March 2015. This program was supported by the Ministry of Education, Culture, Sports, Science and Technology, and was categorized in the Innovative Area of the Grant-in-Aid for Scientific Research scheme. The program was organized and led by Professor Nobuhiro Tsuji of the Department of Materials Science and Engineering at Kyoto University. The project aims to systematically clarify the relationship between the new and unexpected properties of bulk nanostructured metals and their structures through close collaborations of researchers in various fields covering experimental as well theoretical and simulation studies.

An international workshop on Bulk Nanostructured Metals was held in Kyoto during the dates of 26 -29 June 2012. More than 90 participants took part in this workshop with a strong representation from the research teams within the BNM program, plus a small group of invited speakers from other countries. The invited international speakers have been renewed experts with different areas in the field of nanostructured metals, and were invited to give an overall summary of their opinions on the BNM project and on the progress achieved over the first half period of this 5-year program.

The views expressed in this brief report represent the collective opinions of a panel of the following international speakers: Prof. Andrew Godfrey (China), Dr. Niels Hansen (Denmark), Dr. Xiaoxu Huang (Denmark), Prof. Eyoung Seop Kim (Korea), Prof. Reinhard Pippin (Austria), Prof. Naifong Tao (China), Prof. Gerhard Wilde (Germany), Prof. Michael Zehetbauer (Austria), Prof. Ting Zhu (U.S.A.).

The panel formulated several major comments based on the review of the publications and research highlights, the BNM program newsletters, and the oral presentations and posters at the well planned and stimulating workshop. We describe our comments in the following.

1. Integration of experimental studies and theoretical approaches

An outstanding feature of this program is the emphasis on the integration of experimental studies and computer simulations. This integration is involved in all the three sub-topics in the program: structure design (A01), processing (A02) and mechanical properties (A03). Such an approach has led to advances and breakthroughs in all three research topics, which are demonstrated by the marked highlights reported in the BNM program newsletter (June 2012), and detailed in related publications.

2. Dissemination of results and outreach

Within the first half period of the BNM program, the research teams have already published more than 250 journal papers and more than 150 international conference proceedings papers. Such high production rate is extremely impressive. It is to be emphasized that about one third of the journal papers are published in high impact international journals in the fields of materials
science and physics. Furthermore, many of these articles published in international journals have been highly cited and ranked as within the top 25 publications in the related journals.

The team members within the program have been exceptionally active in presenting their results in conferences; more than 600 conference presentations have been made. During this workshop in Kyoto, we enjoyed all the presentations given by the scientists within the BNM program and in particular we were deeply impressed by the high quality of results presented in posters prepared by the many young researchers.

The project leader, as well as many other members from the program, are also very active in organizing/co-organizing international symposia/workshops where they advertised the work supported by the program and presented results from the program to a broad audience.

It is concluded that the quality of research conducted in the program is first-class and the scientific achievements are at a high international level. There is no doubt that the results and publications from this program will have a strong and sustaining impact on future research activities in materials science both in Japan and internationally.

3. Collaborations between research teams within the BNM program

The requirement of combination of both experimental and simulation efforts in the BNM program establishes a basis for the collaboration among groups with different expertise, which is also an essential condition for the success of the program. From the high number of joint publications by different teams from different laboratories/universities, and the active discussions among different researchers (seniors and juniors) during the workshop, we can firmly conclude that the teams within the programs have interacted strongly with each other and made dedicated and efficient joint efforts to reach the targets of the program. We also believe that this has been an efficient condition for the teams to perform their research on an international high level.

Our overall conclusions are very positive. The impressive achievements made within the first half period of this 5-year program demonstrate great success in all aspects covering the selection of research topics, coordination of research activities and teams, and performance of individual projects. It is evident that the success already obtained forms a solid basis for each research team within the program to accelerate their studies in the second half period of the program. We especially recognize the efforts of Prof. Tsuji for establishing this important and unique program and skillfully coordinating the various activities taking place in the program. Finally we take this opportunity to congratulate not only Prof. Tsuji but also all team members on their achievements and we look forward to following their progress within the framework of the BNM program.

Prof. Andrew Godfrey
Tsinghua University, China

Dr. Niste Hansen
Technical University of Denmark, Denmark

Dr. Xiaoxu Huang
Technical University of Denmark, Denmark

Pohang University of Science and Technology, Korea

Dr. Reinhard Pippan
Erich Schmid Institute of Material Science, Austria

Prof. Nairong Tao
Institute of Metal Research, China

Prof. Gerhard Wilde
University of Münster, Germany

Prof. Michael Zehetbauer
University of Vienna, Australia

Prof. Ting Zhu
Georgia Institute of Technology, U.S.A.

28 June, 2012