科学研究費助成事業

東京農工大学・工学(系)研究科(研究院)・卓越教授

研究者番号:20313306

交付決定額(研究期間全体):(直接経費) 46,300,000 円

研究成果の概要(和文): 族セスキ酸化物半導体結晶群(Ga203, In203, AI203)には、それぞれ一つの安定相と複数の準安定相(多形)がある。本結晶群のデバイス応用には、安定相および準安定相成長のキーとなる 条件を解明すると共に、各相の物性解明が必須である。そこで本研究では、複数の結晶成長手法を用い、種々の 基板上で結晶成長を試みた。一連の結果は、非熱平衡下で基板結晶格子および原料分子構造の拘束により準安定 相成長が起こることを解明した。本成果により種々のデバイス応用の道が拓かれた。

研究成果の学術的意義や社会的意義 本研究が対象とした 族セスキ酸化物半導体結晶群は、その大きなバンドギャップから近年、省エネ、低炭素 社会構築のキーとなる低電力ロスのパワーデバイス開発用材料として注目されている。この材料系には、一つの 安定相と複数の準安定相(多形)が存在するという特異性があり、その制御を達成し、それぞれの相の物性を解 明することは学術的のみならず、社会的・産業的にも大きな意義がある。本研究の成果の一部は実際に産業界で 利用されるに至っており、本材料系の進展に大きく貢献した。

It has been known that the group-III sesquioxide semiconductor crystals 研究成果の概要(英文): (Ga203, In203, and A1203) each have one stable phase and multiple metastable phases (polymorphs). In order to fabricate a device using these crystals, it is inevitable to clarify the key conditions for the growth of stable and metastable phases and to elucidate the characteristics of each phase. In this study, these crystals were grown on a variety of substrates (sapphire, GaN, and Ga2O3) by multiple chemical vapor deposition (CVD) methods such as mist CVD and halide vapor phase epitaxy (HVPE). A series of results revealed that growth of metastable phases occurs due to the constraints of the lattice structure of the substrates and molecular structure of the source gases under non-thermal equilibrium. This guideline has paved the way for various device applications.

研究分野: 結晶成長

族セスキ酸化物半導体結晶 安定相 準安定相 熱平衡成長 非熱平衡成長 ミスト化学気相堆積法 ハライド気相成長法 キーワード:

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。

様 式 C-19、F-19-1、Z-19(共通)

1.研究開始当初の背景

省エネ・低炭素社会構築を目的としたパワーデバイスの研究開発において、炭化ケイ素(SiC)や窒化ガリウム(GaN)の次の世代の材料として、より大きなバンドギャップを有する 族セスキ酸化物半導体結晶群(Ga₂O₃, In₂O₃)が注目され始めていた。そこで、本群の結晶成長制御と物性解明に対する要求が高まっていた。

2.研究の目的

族セスキ酸化物半導体結晶群の特徴は、それぞれが一 つの安定相と複数の準安定相(多形)を持つことである。安 定相では融液からバルク単結晶育成が可能で、基板供給が 可能となるが、図1に示すように安定相の結晶系がそれぞ れ異なっている(三方晶コランダム型 -Al₂O₃、単斜晶 -ガ リア型 -Ga₂O₃、立方晶ビクスビ鉱型 c-In₂O₃)。よって、混 晶成長によるバンドギャップエンジニアリングは準安定相

- (Al_xGa_yIn_{1-x-y})₂O₃成長か、基板近傍での格子引込による混 晶成長(例えば -Ga₂O₃基板上 -(Al_xGa_{1-x})₂O₃等)を利用せ ざるを得ない。また、その前段階として安定相および準安定 相成長を発現させるキーパラメータを解明すると共に、各 相の物性解明が必須である。

本研究では、複数の気相成長法を用い、種々の基板結晶上 で 族セスキ酸化物半導体結晶の成長を試み、成長挙動の 解析により準安定相成長が生じるキーパラメータを解明す ること、また、デバイス応用を可能とする高純度・高品質単 結晶膜の成長を目的とした。

3.研究の方法

ミスト化学気相堆積 (Mist Chemical Vapor Deposition: Mist CVD)法、ハライド気相成長 (Halide Vapor Phase Epitaxy: HVPE)法およびトリハライド気相成長(Tri-Halide Vapor Phase Epitaxy: THVPE)法の3つの気相成長法を採用し、安定相 -Al₂0₃(0001)(サファイア)基板お よび安定相 -Ga₂0₃(001)基板上にGa₂0₃およびIn₂0₃成長を様々な条件で試みた。Al₂0₃成長では、 安定相 -Ga₂0₃(201)基板表面に三塩化アルミニウム(AlCl₃)ガスのみを供給し、GaとAl原子 の置換でAl₂0₃層を形成する手法を試みた。

4.研究成果

Mist CVD 法による Ga₂O₃ 成長挙動解明

超音波振動子でミスト化したガリウム()アセチルアセトナート(Ga(C₅H₇O₂)₃)水溶液を酸素(O₂)ガスで輸送し、常圧石英炉内で反応させてサファイア基板上に Ga₂O₃ 成長を試みた。図2に成長層の(a)成長速度、(b)X線回折パターンの成長温度依存性を示す。成長速度は550までは成長温度と共に増加し、550を超えると減少に転じた。つまり、550以下では表面反応律速(非熱平衡下)成長、550以上では熱力学律速(熱平衡下)成長が起こったと分かった。成長層のX線回折パターンより、熱平衡下成長では安定相 -Ga₂O₃ 成長が支配的となることが分かった。特に400付近では、(0001)配向した単結晶 -Ga₂O₃ 層が得られ、対称面(0006)のX線回折ロッキングカーブ(XRC)半値幅 39.8 arcsec、光応答エネルギー5.30 eV(234 nm)と高品質結晶が成長し、深紫外線検出器応用が可能となった。

(2) HVPE 法による Ga₂O₃ 成長挙動解明

原料ガスである一塩化ガリウム(GaCl)と02を窒素(N2)ガスで別々に搬送し、常圧石英炉内 で反応させてサファイア基板上にGa203成長を試みた。GaClの供給分圧 P⁰GaCl</sub>は1.0×10⁻³ atm、 原料供給 / (0/Ga)比は9とし、1時間の成長を行った。図3に成長層の(a)成長速度、(b)X 線回折パターンの成長温度依存性を示す。Mist CVDとは温度が異なるものの、成長速度は700 までは成長温度と共に増加し、700 を超えると減少に転じた。図中の点線は、熱平衡下成長を 仮定した熱力学解析で見積もった成長速度で、700 以上では実験結果と良い一致が見られた。 これより、700 以下では表面反応律速(非熱平衡下)成長、700 以上では熱力学律速(熱平衡 下)成長が起こっていると分かった。成長層のX線回折パターンから、熱平衡下成長では安定相 である 相のみの成長、非熱平衡下成長では成長温度の低下に伴い 相が消失し準安定相の 相が成長するようになることが分かった。500~525 では 相の単相となり、これより低温域で はアモルファス層が得られた。525 成長した膜は(0001)配向した単結晶 -Ga203層で、対称面 (0006)および非対称面(1012)のXRC半値幅はそれぞれ 193、2199 arcsec、Tauc プロットからバ ンドギャップが約5.2 eV と求まった。

図 3 HVPE 法によるサファイア基板上 Ga₂O₃成長の温度依存性: (a)成長速度、(b) -2 X線回折パターン

次に、同様の検討を -Ga₂O₃(001)基板上で試みた。図 4 に -Ga₂O₃(001)基板上に525 および1000 で成長し た層の X 線回折パターンを示す。サファイア基板上の Mist CVD および HVPE 成長と同様に、1000 では安定相 である 相が成長(ホモエピタキシャル成長)した。本 層の XRC 半値幅は基板と同等の非常に小さな値であり、 二次イオン質量分析(SIMS)では成長層中の水素(H) 炭素(C) 窒素(N) 珪素(Si) 塩素(CI)不純物濃度 がそれぞれのバックグラウンド濃度未満であり、容量-電圧(C-V)測定から残留電子密度が10¹³ cm⁻³未満に達 しており、超高純度層が成長できたことが確認された。 本手法は意図的な Si 不純物ドーピング技術と組み合わ され、現在、縦型パワーデバイス作製用の -Ga₂O₃ホモ エピタキシャルウェハの量産技術になっている(文献

)。一方、525 では、非熱平衡下成長であるにも関わ らず、安定相である 相がホモエピタキシャル成長し、 準安定相成長は起こらなかった。

(3) THVPE 法による Ga₂O₃ 成長挙動解明

HVPE 法におけるガリウム原料ガスを GaCI から GaCI₃ に変更し、サファイア基板上に Ga₂O₃を 成長した。その結果、500~525 の範囲で、準安定相 -Ga₂O₃の(0001)配向単結晶層が成長した。 (2)の HVPE における結果との比較から、原料分子構造による拘束が HVPE と THVPE で異なること に起因して、異なる準安定相が成長したことが考えられる。

以上、(1)~(3)の一連の結果から、準安定相 Ga₂O₃の成長のキーパラメータは、()非熱平衡 下成長、()基板結晶格子による拘束、()原料分子構造による拘束の3つであることが解明 された。

(4) Mist CVD 法による In₂O₃ 成長挙動解明
(1)同様に、インジウム()アセチルアセトナート(In(C₅H₇O₂)₃)水溶液を原料とする Mist

CVD 法で、サファイア基板上に In₂O₃成長を試みた。その 結果、非熱平衡下での成長においても安定相 c-ln₂O₃と 準安定相 - In₂O₃が混在した層が成長し、単相の準安定 相 In₂0₃層は成長できなかった。この結果は、一連の Ga₂0₃ 成長の結果に照らして考えた場合、サファイアと In₂O₃の格子不整合が大きいため、基板結晶格子による拘 束が不十分であったためと考えられた。そこで原料分子 構造による拘束を追加する目的で、原料ミストを生成す るボトルに塩酸を加え In₂O₃の成長を試みた。図 5 に成 長温度 550 で成長した In₂O₃の X 線回折パターンの原 料ボトル中の塩酸濃度依存性を示す。原料ボトル中の塩 酸濃度の増加に伴い、安定相 c-In₂O₃の混在が抑制され、 塩酸濃度 0.84 mol/L 以上において単相の準安定相 -In₂0。層の成長が可能となった。室温ホール効果測定によ り、n 型電導性、キャリア密度 10¹⁸~10¹⁹ cm⁻³およびキャ リア移動度~100 cm²V⁻¹s⁻¹が確認され、ガスセンサーや 横型トランジスタ応用の道が拓けた。

(5) HVPE 法による In₂O₃ 成長挙動解明

ー塩化インジウム(InCl)と02を原料ガス、N2をキャリアガスに用い、常圧石英炉内で反応さ せてサファイア基板上にIn203成長を試みた。InClの供給分圧 P⁰InClは1.0×10⁻³ atm、原料供給 / (0/In)比は10とし、1時間の成長を行った。図6に成長層の(a)成長速度、(b)X線回折 パターンの成長温度依存性を示す。成長速度は700 までは成長温度と共に増加し、700 以上 では一定となった。よって、700 以下では表面反応律速(非熱平衡下)成長、700 以上では熱 力学律速(熱平衡下)成長が起こっていると分かった。700 を超えたところで成長速度が不連 続に低下したが、以下で説明する配向方向の変化に起因していると考えられる。成長層のX線回 折パターンを見ると、400~1000 の範囲で安定相である c-In203由来のピークのみが観測され、 非熱平衡下成長であっても準安定相の成長は生じなかった。一方、成長温度700 までは(100) 配向、それ以上の温度では(111)配向成長が支配的になっており、(a)における700 を超えたと ころでの成長速度の不連続な低下の原因は、この支配的な配向の変化であると考えられる。よっ て、HVPE 法でサファイア基板上に準安定相 In203を成長するには Mist CVD 同様に、InCl に代わ る原料(例えば InCl3)の使用が必須と結論される。

(b)

c-In2O3(4 0 0) c-In₂O₃(2 2 2) c-In₅O₃(8 0 0) 000) 5-In2O3(6 0 0) -In₂O₃(4 4 4) units) (arb. 400% 500°0 intensity 600°0 700°0 800°C Log 900°C 1000°C 30 40 50 60 80 20 (deg.)

HVPE 法によるサファイア基板上の In₂0₃ 成長では、 1000 における安定相 c-In₂O₃ 成長においても主配向 の(111)ドメインに(100)配向ドメインがわずかに混 在していた。そこで c-In₂O₃ 層の単結晶化の可否を検 討するため、オフサファイア基板使用の効果を検討し た。図7に1000 でサファイア(0001)ジャスト基板お よび a 方向に5°オフしたサファイア(0001)基板上に 成長した c-In₂O₃層のX線回折(222)極点図を示す。ジ ャスト基板上では = 54.7°に3つの(100)配向回転 ドメイン由来の12ヶのピーク、 = 70.5°に双晶関 係にある(111)配向回転ドメイン由来の6ヶのピーク が得られた。一方、5°オフしたサファイア基板上に成 長した場合、(111)配向由来のピークのみ観測され、さ

図7 サファイア基板上に HVPE 成長し た c- In₂0₃層の X 線回折 (222)極点図: (a) ジャスト基板、(b) 5°オフ基板

らに双晶も消失し、 = 70.5°に3ヶのピークが得られるようになった。すなわち、5°オフしたサファイア基板を用いることで(111)配向した安定相 c-In₂O₃の単結晶層が得られることが分かった。単結晶層のホール効果測定から、n型電導性、室温キャリア密度1.5×10¹⁶ cm⁻³、室温移動度235 cm²V⁻¹s⁻¹という報告例の無い低キャリア密度と高い移動度が得られ、HVPE 成長した In₂O₃層の高純度性が確認された。キャリアの活性化エネルギーは30 meV 程度と求まり、0空孔がその起源と推定している。現在、本単結晶 c-In₂O₃層を用いたショットキーバリアダイオードや金属酸化物半導体電界効果トランジスター(MOSFET)を作製すべく、そのプロセス開発として In₂O₃の水素雰囲気異方性熱エッチング(Hydrogen Environment Anisotropic Thermal Etching: HEATE)法の検討を実施している。現在、安定相の c-In₂O₃のバルク基板については研究開発段階であり、市販されていない。今後、バルク基板の入手が可能になることで In₂O₃の研究が活発化・加速するものと考えられる。

(6) Ga₂0₃基板上への Al₂0₃成長

近年、Ga₂O₃系の MOSFET の研究開発において、酸化物として Al₂O₃ 薄膜の堆積が行われている。 一方、Al₂O₃ 結晶の成長は、その自由エネルギー変化が大きく、気相成長では粉体生成になり易 い。そこで加熱した単結晶 Ga₂O₃ 基板を Al 系ガスに暴露することで Ga₂O₃ 表面を Al₂O₃ 化するプ ロセスを考案した。実際には、常圧石英反応炉内に安定相 $-Ga_2O_3(201)$ 基板(n型低抵抗基板) を設置し、N₂ ガスで AlCl₃ ガスのみを輸送し(原料供給分圧 5 × 10⁻³ atm) 基板表面と反応させ た。図 8 に AlCl₃ 暴露した $-Ga_2O_3$ 基板の(a) 暴露温度依存性(暴露時間: 2 時間) および(b) 暴 露時間依存性(温度: 800))を示す。温度 800 以上で表面に準安定相である $-Al_2O_3 o(001)$ 配向膜が形成され、温度 800 においては反応時間 90 分程度で膜厚が飽和した。断面解析より、 この時の膜厚は約 30 nm であった。この $-Al_2O_3$ 層上に Ti 電極を形成し MOS キャパシタを作製 し C-V 測定を行ったところ、周波数 5 ~ 1000 kHz においてヒステリシスの無い特性が得られた。 よって、本手法は簡便な手法でありながら、デバイス適用の可能な Al₂O₃ 層を成長可能であると 言える。今後、基板の面方位、反応条件を細かく検討することで、他の準安定相が形成される可 能性も期待される。

図 8 AICI₃暴露した Ga₂O₃(201)基板の -2 X線回折パターン: (a) 暴露温度依存性、(b) 800 における暴露時間依存性

< 引用文献 >

Q. T. Thieu, D. Wakimoto, Y. Koishikawa, K. Sasaki, K. Goto, K. Konishi, H. Murakami,

A. Kuramata, Y. Kumagai, and S. Yamakoshi, Jpn. J. Appl. Phys. 56, 110310 (2017).

5.主な発表論文等

〔雑誌論文〕 計11件(うち査読付論文 11件/うち国際共著 5件/うちオープンアクセス 1件)

1.著者名	4.巻
T. Yamaguchi, S. Takahashi, T. Kiguchi, A. Sekiguchi, K. Kaneko, S. Fujita, H. Nagai, M. Sato,	13
T. Onuma, and T. Honda	
2.論文標題	5 . 発行年
Impact of hydrochloric acid on the epitaxial growth of In203 films on (0001) -AI203 substrates	2020年
by mist CVD	
3.雑誌名	6.最初と最後の頁
Applied Physics Express	075504 1-4
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.35848/1882-0786/ab9a90	有
「オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1.者省名	4.奁
K. Goto, H. Nakahata, H. Murakami, and Y. Kumagai	117
2 . 論文標題 Temperature dependence of Ga2O3 growth by halide vapor phase epitaxy on sapphire and -Ga2O3 substrates	5 . 発行年 2020年
3.雑誌名	6.最初と最後の頁
Applied Physics Letters	222101 1-5
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1063/5.0031267	有
オープンアクセス オープンアクセスではない、又はオープンアクセスが困難	国際共著

1.著者名	4.巻
H. Nakahata, R. Togashi, K. Goto, B. Monemar, Y. Kumagai	563
2.論文標題	5 . 発行年
Investigation of halide vapor phase epitaxy of In203 on sapphire (0001) substrates	2021年
3.雑誌名	6.最初と最後の頁
Journal of Crystal Growth	126111 1-6
掲載論文のD01(デジタルオプジェクト識別子)	査読の有無
10.1016/j.jcrvsgro.2021.126111	有
	-
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	該当する

1.著者名	4.巻
K. Ema, K. Sasaki, A. Kuramata, H. Murakami	564
2.論文標題	5 . 発行年
Homo- and hetero-epitaxial growth of -gallium oxide via GaCl3-02-N2 system	2021年
3.雑誌名	6.最初と最後の頁
Journal of Crystal Growth	126129 1-5
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1016/j.jcrysgro.2021.126129	有
	-
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

〔学会発表〕 計66件(うち招待講演 6件/うち国際学会 27件)

Y. Kumagai, K. Nomura, K. Goto, Q.-T. Thieu, R. Togashi, K. Sasaki, K. Konishi, H. Murakami, A. Kuramata, S. Yamakoshi, B. Monemar, A. Koukitu, M. Higashiwaki

2.発表標題

1.発表者名

Progress of homoepitaxial growth technique of thick -Ga203 layers by halide vapor phase epitaxy

3.学会等名

The 18th International Conference on Crystal Growth and Epitaxy (ICCGE-18)(招待講演)(国際学会)

4.発表年

2016年

1.発表者名

K. Konishi, K. Goto, R. Togashi, H. Murakami, M. Higashiwaki, A. Kuramata, S. Yamakoshi, B. Monemar, and Y. Kumagai

2.発表標題

Halide Vapor Phase Epitaxy of -Ga203 Homoepitaxial Layers Using 02 and H20 as 0xygen Sources

3 . 学会等名

2nd International Workshop on Ga2O3 and Related Materials (IWGO 2017)(招待講演)(国際学会)

4 . 発表年 2017年

1.発表者名

Yoshinao Kumagai, Ken Goto, Rie Togashi, Hisashi Murakami, Akito Kuramata, Shigenobu Yamakoshi, Masataka Higashiwaki

2.発表標題

Halide Vapor Phase Epitaxy of Group-III Sesquioxides

3 . 学会等名

2020 Virtual MRS Spring Meeting & Exhibit (招待講演) (国際学会)

4.発表年 2020年

 1.発表者名 熊谷義直,後藤健,富樫理恵,山口智広,村上尚

2.発表標題

酸化物半導体結晶Ga203およびIn203の準安定相発現機構の検討

3 . 学会等名

第68回応用物理学会春季学術講演会(招待講演)

4.発表年 2021年

〔図書〕 計0件

〔産業財産権〕

〔その他〕

東京農工大学大学院工学研究院応用化学部門熊谷研究室ホームページ http://web.tuat.ac.jp/~kumagai/

6 研究組織

6	.丗笂組織		
	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
	村上尚	東京農工大学・工学(系)研究科(研究院)・准教授	2016年度~2020年度
研究分担者	(Murakami Hisashi)		
	(90401455)	(12605)	
		工学院大学・先進工学部・准教授	2017年度~2020年度
研究分担者	(Yamaguchi Tomohiro)		
	(50454517)	(32613)	
	富樫 理恵	上智大学・理工学部・助教	2019年度~2020年度
研究分担者	(Togashi Rie)		
	(50444112)	(32621)	
研究分担者	後藤 健 (Goto Ken) (50572856)	東京農工大学・工学(系)研究科(研究院)・助教 (12605)	2019年度~2020年度
	(30372830)	(12003) 南古豊丁大学・丁学(玄)研究科(研究院)・特任助教	2018年度
研究分担者	(Konishi Keita)	(12605)	
1	(00000201)	(

7.科研費を使用して開催した国際研究集会

〔国際研究集会〕 計0件

8.本研究に関連して実施した国際共同研究の実施状況

共同研究相手国	相手方研究機関			
スウェーデン	Linkoping University			
ドイツ	Paul-Drude-Institut	Otto-von-Guericke University Magdeburg		
スペイン	The Spanish National Research Council			